Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient green InP-based QD-LED by controlling electron injection and leakage

Abstract

Green indium phosphide (InP)-based quantum dot light-emitting diodes (QD-LEDs) still suffer from low efficiency and short operational lifetime, posing a critical challenge to fully cadmium-free QD-LED displays and lighting1,2,3. Unfortunately, the factors that underlie these limitations remain unclear and, therefore, no clear device-engineering guidelines are available. Here, by using electrically excited transient absorption spectroscopy, we find that the low efficiency of state-of-the-art green cadmium-free QD-LEDs (which ubiquitously adopt the InP–ZnSeS–ZnS core–shell–shell structure) originates from the ZnSeS interlayer because it imposes a high injection barrier that limits the electron concentration and trap saturation. We demonstrate, both experimentally and theoretically, that replacing the currently widely used ZnSeS interlayer with a thickened ZnSe interlayer enables improved electron injection and depressed leakage simultaneously, allowing to achieve a peak external quantum efficiency of 26.68% and T95 lifetime (time for the luminance to drop to 95% of the initial value) of 1,241 h at an initial brightness of 1,000 cd m–2 in green InP-based QD-LEDs emitting at 543 nm—exceeding the previous best values by a factor of 1.6 and 165, respectively3,4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EETA spectroscopy.
Fig. 2: Strategies to improve the EQE of green InP-based QD-LEDs.
Fig. 3: Tunnelling model of electron injection and leakage in QD-LEDs.
Fig. 4: Characterization of high-performance InP–thick ZnSe–ZnS QD-LEDs.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the article and its Supplementary Information. All other relevant data are available from the corresponding authors upon reasonable request. Additional data are available on Figshare at https://doi.org/10.6084/m9.figshare.27682983 (ref. 43). Source data are provided with this paper.

Code availability

The code that supports the findings of this study is available from the corresponding authors upon reasonable request.

References

  1. Won, Y.-H. et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Kim, T. et al. Efficient and stable blue quantum dot light-emitting diode. Nature 586, 385–389 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Chao, W.-C. et al. High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility. Commun. Mater. 2, 96 (2021).

    Article  CAS  Google Scholar 

  4. Wu, Q. et al. Quasi‐shell‐growth strategy achieves stable and efficient green InP quantum dot light‐emitting diodes. Adv. Sci. 9, 2200959 (2022).

    Article  CAS  Google Scholar 

  5. Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Coe, S., Woo, W.-K., Bawendi, M. & Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. García de Arquer, F. P. et al. Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021).

    Article  PubMed  Google Scholar 

  9. Deng, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photon. 16, 505–511 (2022).

    Article  ADS  CAS  Google Scholar 

  10. Xu, H. et al. Dipole–dipole-interaction-assisted self-assembly of quantum dots for highly efficient light-emitting diodes. Nat. Photon. 18, 186–191 (2024).

  11. Meng, T. et al. Ultrahigh-resolution quantum-dot light-emitting diodes. Nat. Photon. 16, 297–303 (2022).

    Article  ADS  CAS  Google Scholar 

  12. Dai, X., Deng, Y., Peng, X. & Jin, Y. Quantum‐dot light‐emitting diodes for large‐area displays: towards the dawn of commercialization. Adv. Mater. 29, 1607022 (2017).

    Article  Google Scholar 

  13. Madelung, O. Semiconductors: Group IV Elements and III-V Compounds (Springer Science & Business Media, 2012).

  14. Yu, P. et al. Highly efficient green InP-based quantum dot light-emitting diodes regulated by inner alloyed shell component. Light Sci. Appl. 11, 162 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, B., Tang, B., Fan, F. & Du, J. Transient absorption spectrometer using excitation by pulse current. CN Patent CN112683797B (2021).

  16. Gao, Y. et al. Minimizing heat generation in quantum dot light-emitting diodes by increasing quasi-Fermi-level splitting. Nat. Nanotechnol. 18, 1168–1174 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Klimov, V. I., Mikhailovsky, A. A., McBranch, D., Leatherdale, C. A. & Bawendi, M. G. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 287, 1011–1013 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Klimov, V. I. Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J. Phys. Chem. B 104, 6112–6123 (2000).

    Article  CAS  Google Scholar 

  19. Livache, C. et al. High-efficiency photoemission from magnetically doped quantum dots driven by multi-step spin-exchange Auger ionization. Nat. Photon. 16, 433–440 (2022).

    Article  ADS  CAS  Google Scholar 

  20. Karpov, S. ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: a review. Opt. Quantum Electron. 47, 1293–1303 (2015).

    Article  CAS  Google Scholar 

  21. Ishioka, K., Barker, B. G. Jr, Yanagida, M., Shirai, Y. & Miyano, K. Direct observation of ultrafast hole injection from lead halide perovskite by differential transient transmission spectroscopy. J. Phys. Chem. Lett. 8, 3902–3907 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Yang, K., East, J. R. & Haddad, G. I. Numerical modeling of abrupt heterojunctions using a thermionic-field emission boundary condition. Solid State Electron. 36, 321–330 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Walker, A., Kambili, A. & Martin, S. Electrical transport modelling in organic electroluminescent devices. J. Phys. Condens. Matter 14, 9825 (2002).

    Article  ADS  CAS  Google Scholar 

  24. Jung, S.-M. et al. Modelling charge transport and electro-optical characteristics of quantum dot light-emitting diodes. npj Comput. Mater. 7, 122 (2021).

    Article  ADS  CAS  Google Scholar 

  25. Burrows, P. & Forrest, S. Electroluminescence from trap‐limited current transport in vacuum deposited organic light emitting devices. Appl. Phys. Lett. 64, 2285–2287 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Scholz, S., Kondakov, D., Lussem, B. & Leo, K. Degradation mechanisms and reactions in organic light-emitting devices. Chem. Rev. 115, 8449–8503 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Mude, N. N., Khan, Y., Thuy, T. T., Walker, B. & Kwon, J. H. Stable ZnS electron transport layer for high-performance inverted cadmium-free quantum dot light-emitting diodes. ACS Appl. Mater. Interfaces 14, 55925–55932 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, H. et al. High-efficiency green InP quantum dot-based electroluminescent device comprising thick-shell quantum dots. Adv. Opt. Mater. 7, 1801602 (2019).

    Article  Google Scholar 

  29. Moon, H. et al. Composition-tailored ZnMgO nanoparticles for electron transport layers of highly efficient and bright InP-based quantum dot light emitting diodes. Chem. Commun. 55, 13299–13302 (2019).

    Article  CAS  Google Scholar 

  30. Iwasaki, Y., Motomura, G., Ogura, K. & Tsuzuki, T. Efficient green InP quantum dot light-emitting diodes using suitable organic electron-transporting materials. Appl. Phys. Lett. 117, 111104 (2020).

    Article  ADS  CAS  Google Scholar 

  31. Gao, P., Zhang, Y., Qi, P. & Chen, S. Efficient InP green quantum-dot light-emitting diodes based on organic electron transport layer. Adv. Opt. Mater. 10, 2202066 (2022).

    Article  CAS  Google Scholar 

  32. Li, L. et al. Efficient and bright green InP quantum dot light-emitting diodes enabled by a self-assembled dipole interface monolayer. Nanoscale 15, 2837–2842 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, T. et al. Understanding and hindering the electron leakage in green InP quantum-dot light-emitting diodes. Adv. Photon. Res. 4, 2300146 (2023).

    Article  CAS  Google Scholar 

  34. Wu, Q. et al. Bridging chloride anions enables efficient and stable InP green quantum-dot light-emitting diodes. Adv. Opt. Mater. 11, 2300659 (2023).

    Article  CAS  Google Scholar 

  35. Shin, S. et al. Fluoride-free synthesis strategy for luminescent InP cores and effective shelling processes via combinational precursor chemistry. Chem. Eng. J. 466, 143223 (2023).

    Article  CAS  Google Scholar 

  36. Wang, L., Fan, Z., Liu, D., Zhang, Z. & Zou, B. Modified charge injection in green InP quantum dot light-emitting diodes utilizing a plasma-enhanced NiO buffer layer. J. Phys. Chem. C 128, 3985–3993 (2024).

    Article  CAS  Google Scholar 

  37. Zhang, T. et al. Electric dipole modulation for boosting carrier recombination in green InP QLEDs under strong electron injection. Nanoscale Adv. 5, 385–392 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Wang, Y. et al. Boosting the efficiency and stability of green InP quantum dot light emitting diodes by interface dipole modulation. J. Mater. Chem. C 10, 8192 (2022).

    Article  CAS  Google Scholar 

  39. Taylor, D. A. et al. Importance of surface functionalization and purification for narrow FWHM and bright green-emitting InP core-multishell quantum dots via a two-step growth process. Chem. Mater. 33, 4399–4407 (2021).

    Article  CAS  Google Scholar 

  40. Hunsche, S., Dekorsy, T., Klimov, V. & Kurz, H. Ultrafast dynamics of carrier-induced absorption changes in highly-excited CdSe nanocrystals. Appl. Phys. B 62, 3–10 (1996).

    Article  ADS  Google Scholar 

  41. Kumar, B., Campbell, S. A. & Paul Ruden, P. Modeling charge transport in quantum dot light emitting devices with NiO and ZnO transport layers and Si quantum dots. J. Appl. Phys. 114, 044507 (2013).

  42. Gao, X. & Yee, S. S. Hole capture cross section and emission coefficient of defect centers related to high-field-induced positive charges in SiO2 layers. Solid State Electron. 39, 399–403 (1996).

    Article  ADS  CAS  Google Scholar 

  43. Bian, Y. et al. Datasets for ‘Efficient green InP-based QD-LED by controlling electron injection and leakage’. Figshare https://doi.org/10.6084/m9.figshare.27682983 (2024).

  44. Lee, T. et al. Highly efficient and bright inverted top-emitting InP quantum dot light-emitting diodes introducing a hole-suppressing interlayer. Small 15, 1905162 (2019).

  45. Kim, J. et al. Realization of highly efficient InP quantum dot light-emitting diodes through in-depth investigation of exciton-harvesting layers. Adv. Opt. Mater. 11, 2300088 (2023).

  46. Lee, S. H. et al. ZnSeTe quantum dots as an alternative to InP and their high-efficiency electroluminescence. Chem. Mater. 32, 5768–5775 (2020).

  47. Yoon, S. Y. et al. Highly emissive green ZnSeTe quantum dots: effects of core size on their optical properties and comparison with InP counterparts. ACS Energy Lett. 8, 1131–1140 (2023).

  48. Sun, L. et al. Efficient and stable multi‐color emissions of the coumarin modified Cs3LnCl6 lead‐free perovskite nanocrystals and led application. Adv. Mater. 36, 2310065 (2024).

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (grant nos. U22A2072, 52272167 and 62204078), Innovation Program for Quantum Science and Technology (grant no. 2021ZD0301603), Fundamental Research Funds for the Central Universities, the National Key R&D Program of China (grant nos. 2023YFE0205000 and 2022YFB3602901), Zhongyuan High Level Talents Special Support Plan (grant no. 244200510009), the Beijing Natural Science Foundation (grant no. Z220007) and the Postdoctoral Fellowship Program (Grade C) of the China Postdoctoral Science Foundation (grant no. GZC20240386).

Author information

Authors and Affiliations

Authors

Contributions

F.F. and H.S. conceived the concept and designed the experiments. H.S., F.F., A.T. and F.C. supervised the project. Y.B. and X.Y. contributed equally. Y.B. and Q.L. synthesized the materials. F.C., S.W., H.Z., W.Z. and D.Z. fabricated the devices and collected the performance data of the QD-LEDs. X.Y. conducted the EETA experiments and developed the tunnelling model. Z.L. and W.H. collected the operational lifetime data of the QD-LEDs. Y.B., X.Y., F.C., B.L., F.F. and H.S. conducted the data analysis and wrote the manuscript. All authors contributed to the scientific discussion and modified the manuscript.

Corresponding authors

Correspondence to Fei Chen, Aiwei Tang, Fengjia Fan or Huaibin Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Eunjoo Jang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 PETA and EETA spectra of Cd-based QD-LEDs.

PETA spectra of QD-LEDs based on (a) 636 nm (ZnCdSe/ZnSeS), (b) 529 nm (CdSeS/ZnSe/ZnS) and (c) 473 nm (ZnCdSe/ZnSe/ZnS) core/shell QDs. EETA spectra of QD-LEDs based on (d) 636 nm (ZnCdSe/ZnSeS), (e) 529 nm (CdSeS/ZnSe/ZnS) and (f) 473 nm (ZnCdSe/ZnSe/ZnS) core/shell QDs.

Source Data

Extended Data Fig. 2 Characterizations of high-performance QD-LEDs based on 636 nm, 529 nm and 473 nm Cd-based QDs.

a, d, g, Current density-luminance-voltage (J–L–V) characteristics. b, e, h, EQE and current efficiency (ηA) as functions of luminance for those devices. c, f, i, EL spectra versus voltage profiles.

Source Data

Extended Data Fig. 3 PETA and EETA spectra on InP-based QD-LEDs.

PETA spectra of QD-LEDs based on (a) 615 nm, (c) 593 nm, (e) 560 nm and (g) 540 nm InP/ZnSeS/ZnS core/shell QDs. EETA spectra of QD-LEDs based on (b) 615 nm, (d) 593 nm, (f) 560 nm and (h) 540 nm InP/ZnSeS/ZnS core/shell QDs.

Source Data

Extended Data Fig. 4 Characterizations of QD-LEDs based on 615 nm and 540 nm InP/ZnSeS/ZnS QDs.

a, d, J–L–V characteristics. b, e, EQE and ηA as functions of luminance for those devices. c, f, EL spectra versus voltage profiles.

Source Data

Extended Data Fig. 5 Characterizations of InP/ZnSeS/ZnS QDs and InP-based QD-LEDs with different ZnS proportions in the ZnSeS interlayer shell.

a, Absorbance and PL spectra. b, FWHM (left axis) and PL QY (right axis). c, X-ray diffraction pattern. d, J–L–V characteristics. e, EQE and ηA as functions of luminance for those devices.

Source Data

Extended Data Fig. 6 Characterizations of InP/ZnSe/ZnS QDs and QD-LEDs with different ZnSe thicknesses.

a, Absorbance and PL spectra. b, FWHM (left axis) and PL QY (right axis). c, X-ray diffraction pattern. TEM images of InP/ZnSe/ZnS QDs with different ZnSe thicknesses (2.5 nm, 3.3 nm, 4.0 nm, 4.5 nm). e, J–L–V characteristics. f, EQE and ηA as functions of luminance for those devices.

Source Data

Extended Data Fig. 7 Comparison of our device with previously reported high-performance green InP-based QD-LEDs in terms of EQE, luminance and lifetime.

a, Comparison of EQE with previously reported values. b, Comparison of luminance with previously reported values. Comparison of (c) T50@100 cd m−2 and (d) T95@100 cd m−2 lifetime with previously reported values. Data are taken from refs. 3,4,14,27,28,29,31,32,33,34,35,37,38,44,45.

Source Data

Extended Data Fig. 8 Operational lifetimes characterizations of QD-LEDs.

The operational lifetimes (actual luminance/initial luminance (L/L0) versus time) of QD-LEDs based on (a) InP/ZnSeS/ZnS, (b) InP/ZnSe (2.5 nm)/ZnS, (c) InP/ZnSe (3.3 nm)/ZnS and (d) InP/ZnSe (4.5 nm)/ZnS. The lifetimes (T95) at various initial luminance (L0) values are shown in the insets. The acceleration factors (n) are fitted according to the empirical relationship of L0nT = constant.

Source Data

Extended Data Table 1 Comparison of our device with previously reported high-performance green Cd-free based QD-LEDs in terms of EQE and luminance
Extended Data Table 2 Comparison of our device with previously reported high-performance green Cd-free based QD-LEDs in terms of lifetime

Supplementary information

Supplementary Information

Supplementary Figs. 1–14 and Tables 1–6.

Peer Review File

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, Y., Yan, X., Chen, F. et al. Efficient green InP-based QD-LED by controlling electron injection and leakage. Nature 635, 854–859 (2024). https://doi.org/10.1038/s41586-024-08197-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-08197-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing