Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Signatures of longitudinal spin pumping in a magnetic phase transition

Subjects

Abstract

A particle current generated by pumping in the absence of gradients in potential energy, density or temperature1 is associated with non-trivial dynamics. A representative example is charge pumping that is associated with the quantum Hall effect2 and the quantum anomalous Hall effect3. Spin pumping, the spin equivalent of charge pumping, refers to the emission of a spin current by magnetization dynamics4,5,6,7. Previous studies have focused solely on transversal spin pumping arising from classical dynamics, which corresponds to precessing atomic moments with constant magnitude. However, longitudinal spin pumping arising from quantum fluctuations, which correspond to a temporal change in the atomic moment’s magnitude, remains unexplored. Here we experimentally investigate longitudinal spin pumping using iron–rhodium (FeRh), which undergoes a first-order antiferromagnet-to-ferromagnet phase transition during which the atomic moment’s magnitude varies over time. By injecting a charge current into a FeRh/platinum bilayer, we induce a rapid phase transition of FeRh in nanoseconds, leading to the emission of a spin current to the platinum layer. The observed inverse spin Hall signal is about one order of magnitude larger than expected for transversal spin pumping, suggesting the presence of longitudinal spin pumping driven by quantum fluctuations and indicating its superiority over classical transversal spin pumping. Our result highlights the significance of quantum fluctuations in spin pumping and holds broad applicability in diverse angular momentum dynamics, such as laser-induced ultrafast demagnetization8, orbital pumping9,10 and quantum spin transfer11,12,13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transversal and longitudinal spin pumping.
Fig. 2: Real-time measurement of the Joule-heating-induced phase transition.
Fig. 3: Phase-transition-induced spin pumping.
Fig. 4: Numerical calculations of spin currents from transverse and longitudinal spin pumping.

Similar content being viewed by others

Data availability

The experimental and theoretical calculation data used in this paper are freely available at the Open Science Framework at https://doi.org/10.17605/OSF.IO/9p7q2Source data are provided with this paper.

References

  1. Citro, R. & Aidelsburger, M. Thouless pumping and topology. Nat. Rev. Phys. 5, 87–101 (2023).

    Article  Google Scholar 

  2. Laughlin, R. B. Quantized Hall conductivity in two dimensions. Phys. Rev. B 23, 5632(R) (1981).

    Article  ADS  MATH  Google Scholar 

  3. Kawamura, M. et al. Laughlin charge pumping in a quantum anomalous Hall insulator. Nat. Phys. 19, 333–337 (2023).

    Article  CAS  MATH  Google Scholar 

  4. Tserkovnyak, Y., Brataas, A. & Bauer, G. E. W. Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002).

    Article  ADS  PubMed  Google Scholar 

  5. Šimánek, E. Gilbert damping in ferromagnetic films due to adjacent normal-metal layers. Phys. Rev. B 68, 224403 (2003).

    Article  ADS  MATH  Google Scholar 

  6. Mizukami, S., Ando, Y. & Miyazaki, T. Ferromagnetic resonance linewidth for NM/80NiFe/NM films (NM=Cu, Ta, Pd and Pt). J. Magn. Magn. Mater. 226, 1640–1642 (2001).

    Article  ADS  Google Scholar 

  7. Urban, R., Woltersdorf, G. & Heinrich, B. Gilbert damping in single and multilayer ultrathin films: role of interfaces in nonlocal spin dynamics. Phys. Rev. Lett. 87, 217204 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Hayashi, H., Go, D., Haku, S., Mokrousov, Y. & Ando, K. Observation of orbital pumping. Nat. Electron. 7, 646–652 (2024).

    Article  CAS  MATH  Google Scholar 

  10. Han, S. et al. Orbital pumping incorporating both orbital angular momentum and position. Preprint at https://arxiv.org/abs/2311.00362 (2023).

  11. Zholud, A., Freeman, R., Cao, R., Srivastava, A. & Urazhdin, S. Spin transfer due to quantum magnetization fluctuations. Phys. Rev. Lett. 119, 257201 (2017).

    Article  ADS  PubMed  Google Scholar 

  12. Mitrofanov, A. & Urazhdin, S. Nonclassical spin transfer effects in an antiferromagnet. Phys. Rev. Lett. 126, 037203 (2021).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  13. Petrović, M. D., Mondal, P., Feiguin, A. E. & Nikolić, B. K. Quantum spin torque driven transmutation of an antiferromagnetic Mott insulator. Phys. Rev. Lett. 126, 197202 (2021).

    Article  ADS  PubMed  Google Scholar 

  14. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  ADS  CAS  MATH  Google Scholar 

  15. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    Article  ADS  CAS  MATH  Google Scholar 

  16. Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    Article  ADS  Google Scholar 

  17. Mosendz, O. et al. Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers. Phys. Rev. B 82, 214403 (2010).

    Article  ADS  Google Scholar 

  18. Nakayama, H. et al. Geometry dependence on inverse spin Hall effect induced by spin pumping in Ni81Fe19/Pt films. Phys. Rev. B 85, 144408 (2012).

    Article  ADS  MATH  Google Scholar 

  19. Wang, H. L. et al. Scaling of spin Hall angle in 3d, 4d, and 5d metals from Y3Fe5O12/metal spin pumping. Phys. Rev. Lett. 112, 197201 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  21. Fallot, M. Les alliages du fer avec les métaux de la famille du platine. Ann. Phys. 11, 291–332 (1938).

    Article  Google Scholar 

  22. Maat, S., Thiele, J.-U. & Fullerton, E. E. Temperature and field hysteresis of the antiferromagnetic-to-ferromagnetic phase transition in epitaxial FeRh films. Phys. Rev. B 72, 214432 (2005).

    Article  ADS  MATH  Google Scholar 

  23. Barker, J. & Chantrell, R. W. Higher-order exchange interactions leading to metamagnetism in FeRh. Phys. Rev. B 92, 094402 (2015).

    Article  ADS  Google Scholar 

  24. Stamm, C. et al. Antiferromagnetic-ferromagnetic phase transition in FeRh probed by X-ray magnetic circular dichroism. Phys. Rev. B 77, 184401 (2008).

    Article  ADS  MATH  Google Scholar 

  25. Koenig, C. Self-consistent band structure of paramagnetic, ferromagnetic and antiferromagnetic ordered FeRh. J. Phys. F 12, 1123 (1982).

    Article  ADS  CAS  MATH  Google Scholar 

  26. Sandratskii, L. M. & Mavropoulos, P. Magnetic excitations and femtomagnetism of FeRh: a first-principles study. Phys. Rev. B 83, 174408 (2011).

    Article  ADS  MATH  Google Scholar 

  27. Kouvel, J. S. & Hartelius, C. C. Anomalous magnetic moments and transformations in the ordered alloy FeRh. J. Appl. Phys. 33, 1343 (1962).

    Article  ADS  CAS  MATH  Google Scholar 

  28. Wang, Y. et al. Spin pumping during the antiferromagnetic–ferromagnetic phase transition of iron–rhodium. Nat. Commun. 11, 275 (2020).

    Article  ADS  PubMed  PubMed Central  MATH  Google Scholar 

  29. Nan, T. et al. Electric-field control of spin dynamics during magnetic phase transitions. Sci. Adv. 6, eabd2613 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  30. Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367–374 (2014).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  31. Kovalev, A. A., Bauer, G. E. W. & Brataas, A. Perpendicular spin valves with ultrathin ferromagnetic layers: magnetoelectronic circuit investigation of finite-size effects. Phys. Rev. B 73, 054407 (2006).

    Article  ADS  Google Scholar 

  32. Bass, J. & Pratt, W. P. Spin-diffusion lengths in metals and alloys, and spin-flipping at metal/metal interfaces: an experimentalist’s critical review. J. Phys. Condens. Matter 19, 183201 (2007).

    Article  ADS  Google Scholar 

  33. Grazhdankina, N. P. Magnetic first order phase transitions. Sov. Phys. Usp. 11, 727–745 (1969).

    Article  ADS  MATH  Google Scholar 

  34. Fruchart, D. & Bertaut, E. F. Magnetic studies of the metallic perovskite-type compounds of manganese. J. Phys. Soc. Jpn 44, 781–791 (1978).

    Article  ADS  CAS  MATH  Google Scholar 

  35. Atxitia, U. et al. Micromagnetic modeling of laser-induced magnetization dynamics using the Landau-Lifshitz-Bloch equation. Appl. Phys. Lett. 91, 232507 (2007).

    Article  ADS  Google Scholar 

  36. Carpene, E., Hedayat, H., Boschini, F. & Dallera, C. Ultrafast demagnetization of metals: collapsed exchange versus collective excitations. Phys. Rev. B 91, 174414 (2015).

    Article  ADS  Google Scholar 

  37. Koopmans, B. et al. Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. Nat. Mater. 9, 259–265 (2010).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  38. Battiato, M., Carva, K. & Oppeneer, P. M. Superdiffusive spin transport as a mechanism of ultrafast demagnetization. Phys. Rev. Lett. 105, 027203 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Mueller, B. Y. et al. Feedback effect during ultrafast demagnetization dynamics in ferromagnets. Phys. Rev. Lett. 111, 167204 (2013).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  40. Turgut, E. et al. Stoner vs. Heisenberg: ultrafast exchange reduction and magnon generation during laser-induced demagnetization. Phys. Rev. B 94, 220408(R) (2016).

    Article  ADS  Google Scholar 

  41. Go, D. & Lee, H.-W. Orbital torque: torque generation by orbital current injection. Phys. Rev. Res. 2, 013177 (2020).

    Article  CAS  Google Scholar 

  42. Lee, D. et al. Orbital torque in magnetic bilayers. Nat. Commun. 12, 6710 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  43. Sala, G. & Gambardella, P. Giant orbital Hall effect and orbital-to-spin conversion in 3d, 5d, and 4f metallic heterostructures. Phys. Rev. Res. 4, 033037 (2022).

    Article  CAS  MATH  Google Scholar 

  44. Bruno, P. Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers. Phys. Rev. B 39, 865(R) (1989).

    Article  ADS  Google Scholar 

  45. Zhang, L. & Niu, Q. Angular momentum of phonons and the Einstein–de Haas effect. Phys. Rev. Lett. 112, 085503 (2014).

    Article  ADS  MATH  Google Scholar 

  46. Holanda, J., Maior, D. S., Azevedo, A. & Rezende, S. M. Detecting the phonon spin in magnon–phonon conversion experiments. Nat. Phys. 14, 500–506 (2018).

    Article  CAS  Google Scholar 

  47. Hamada, M., Minamitani, E., Hirayama, M. & Murakami, S. Phonon angular momentum induced by the temperature gradient. Phys. Rev. Lett. 121, 175301 (2018).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  48. Streib, S., Keshtgar, H. & Bauer, G. E. W. Damping of magnetization dynamics by phonon pumping. Phys. Rev. Lett. 121, 027202 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Schlitz, R. et al. Magnetization dynamics affected by phonon pumping. Phys. Rev. B 106, 014407 (2022).

    Article  ADS  CAS  Google Scholar 

  50. Ishito, K. et al. Truly chiral phonons in α-HgS. Nat. Phys. 19, 35–39 (2023).

    Article  CAS  Google Scholar 

  51. Chen, K. & Zhang, S. Spin pumping in the presence of spin–orbit coupling. Phys. Rev. Lett. 114, 126602 (2015).

    Article  ADS  PubMed  MATH  Google Scholar 

  52. Yu, C. Q. et al. Thickness-dependent magnetic order and phase-transition dynamics in epitaxial Fe-rich FeRh thin films. Phys. Lett. A 383, 2424 (2019).

    Article  ADS  CAS  MATH  Google Scholar 

  53. Wang, Y., Deorani, P., Qiu, X., Kwon, J. H. & Yang, H. Determination of intrinsic spin Hall angle in Pt. Appl. Phys. Lett. 105, 152412 (2014).

    Article  ADS  Google Scholar 

  54. Stamm, C. et al. Magneto-optical detection of the spin Hall effect in Pt and W thin films. Phys. Rev. Lett. 119, 087203 (2017).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  55. Wang, L. et al. Giant room temperature interface spin Hall and inverse spin Hall effects. Phys. Rev. Lett. 116, 196602 (2016).

    Article  ADS  PubMed  Google Scholar 

  56. Tao, X. et al. Self-consistent determination of spin Hall angle and spin diffusion length in Pt and Pd: the role of the interface spin loss. Sci. Adv. 4, eaat1670 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  57. Lee, J.-S., Vescovo, E., Plucinski, L., Schneider, C. M. & Kao, C.-C. Electronic structure and magnetic properties of epitaxial FeRh(001) ultrathin films on W(100). Phys. Rev. B 82, 224410 (2010).

    Article  ADS  Google Scholar 

  58. Núñez, A. S., Duine, R. A., Haney, P. & MacDonald, A. H. Theory of spin torques and giant magnetoresistance in antiferromagnetic metals. Phys. Rev. B 73, 214426 (2006).

    Article  ADS  Google Scholar 

  59. Yu, J. et al. Long spin coherence length and bulk-like spin–orbit torque in ferrimagnetic multilayers. Nat. Mater. 18, 29–34 (2019).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  60. Slater, J. C. & Koster, G. F. Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498–1524 (1954).

    Article  ADS  CAS  MATH  Google Scholar 

  61. Luisier, M., Schenk, A., Fichtner, W. & Klimeck, G. Atomistic simulation of nanowires in the sp3d5s* tight-binding formalism: from boundary conditions to strain calculations. Phys. Rev. B 74, 205323 (2006).

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge discussion with G.-M. Choi, H.-S. Lee, E.-G. Moon and Y. Kim. M.-H.J. acknowledges the support from the National Research Foundation of Korea (NRF) (2020R1A2C3008044 and 2022R1A4A1033562) and Samsung Electronics Co., Ltd (202470076.08). K.-J.K. acknowledges the support from the NRF (RS-2023-00275259 and RS-2023-00207732), Technology Innovation Program (20020286) by the Ministry of Trade, Industry and Energy of Korea and Korea Semiconductor Research Consortium, and Samsung Research Funding Center of Samsung Electronics (SRFC-MA2002-02). K.-J.L. acknowledges the support from the NRF (2022M3H4A1A04096339, 2020R1A2C3013302, and 2022R1A4A103134911), Samsung Research Funding Center of Samsung Electronics (SRFCMA1702-02), and Samsung Electronics Co., Ltd (IO201019-07699-01). H.-W.L. acknowledges the support from the NRF (RS-2024-00410027). S.K.K. acknowledges the support from the NRF (grant numbers 2020H1D3A2A03099291 and 2021R1C1C1006273).

Author information

Authors and Affiliations

Authors

Contributions

T.L., S.K. and K.-J.K. designed the experimental set-up and performed the measurements and data collection. M.T.P. and M.-H.J. performed the deposition of high-quality FeRh films and characterized their properties. H.-W.K., J.H.O., S.H., J.G.J., G.-W.B., S.K.K., H.-W.L. and K.-J.L. carried out theoretical and numerical study on spin pumping. All authors performed the data analysis and result discussion and contributed to the paper preparation.

Corresponding authors

Correspondence to Myung-Hwa Jung, Kab-Jin Kim or Kyung-Jin Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Sergei Urazhdin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Geometry of samples.

Atomic force microscope (AFM) image of FeRh/Pt (left) and FeRh/Ta (right).

Extended Data Fig. 2 Dependence of inverse spin Hall voltage on the magnetic field angle.

a, Vodd profile obtained for specific field angles. b, Peak area as a function of magnetic field angle.

Source Data

Extended Data Fig. 3 Dependence of resistance change and inverse spin Hall voltage on the current polarity.

a, VOSC profile for positive (black) and negative (green) magnetic fields when positive current is injected. It is important to note that distinguishing the difference in VOSC between positive and negative fields is challenging from VOSC versus time plot, as explained in Supplementary Note S3. b, Resistance variation obtained from the VOSC profile. c, Subtracted signal \({V}_{{odd}}=\{{V}_{{OSC}}(+H)-{V}_{{OSC}}(-H)\}/2\). The gray line indicates the time when the phase transition occurs. d-f, same as a-c obtained for a negative current. The results are obtained from FeRh (170 nm)/Pt (5 nm).

Source Data

Extended Data Fig. 4 Magnetic field dependence of peak area and emitted spin quantity.

a, Area \({A}_{{Vt}}[=\int {dt}{V}_{{odd}}(t)]\) of peak ISHE voltage as a function of the field (Hy). b, The amount of emitted spin per unit area (∆SSP) from FeRh to Pt, calculated from a.

Source Data

Extended Data Fig. 5 Two-macrospin simulation results.

a, Time evolution of transversal spin pumping current \({j}_{s}^{\perp }\) at various external fields \(({\mu }_{0}{H}_{y}\ge 90\,{\rm{mT}})\). b, Time evolution of \({j}_{s}^{\perp }\) and angle θ between two sublattice moments at μ0Hy = 200 mT. Grey area of b represents standard deviations of \({j}_{s}^{\perp }\).

Source Data

Extended Data Fig. 6 Tight-biding model.

Schematic of NM/FM(tFM)/NM system. The FM is sandwiched between two semi-infinite NM contacts and each part is constructed with a layer periodic over the y direction. Boxed area denotes bcc unit cells composing the layer.

Supplementary information

Supplementary Information

Supplementary Notes 1–10, Figs. 1–15, Tables 1 and 2, and References.

Peer Review File

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, T., Park, M.T., Ko, HW. et al. Signatures of longitudinal spin pumping in a magnetic phase transition. Nature 638, 106–111 (2025). https://doi.org/10.1038/s41586-024-08367-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-08367-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing