Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A genomic history of the North Pontic Region from the Neolithic to the Bronze Age

Abstract

The North Pontic Region was the meeting point of the farmers of Old Europe and the foragers and pastoralists of the Eurasian steppe1,2, and the source of migrations deep into Europe3,4,5. Here we report genome-wide data from 81 prehistoric North Pontic individuals to understand the genetic makeup of its people. North Pontic foragers had ancestry from Balkan and Eastern hunter-gatherers6 as well as European farmers and, occasionally, Caucasus hunter-gatherers. During the Eneolithic period, a wave of migrants from the Caucasus–Lower Volga area7 bypassed local foragers to mix in equal parts with Trypillian farmers, forming the people of the Usatove culture around 4500 bce. A temporally overlapping wave of migrants from the Caucasus–Lower Volga blended with foragers instead of farmers to form Serednii Stih people7. The third wave was the Yamna—descendants of the Serednii Stih who formed by mixture around 4000 bce and expanded during the Early Bronze Age (3300 bce). The temporal gap between Serednii Stih and the Yamna is bridged by a genetically Yamna individual from Mykhailivka, Ukraine (3635–3383 bce), a site of archaeological continuity across the Eneolithic–Bronze Age transition and a likely epicentre of Yamna formation. Each of these three waves of migration propagated distinctive ancestries while also incorporating outsiders, a flexible strategy that may explain the success of the peoples of the North Pontic in spreading their genes and culture across Eurasia3,4,5,8,9,10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Map of sampling locations including newly generated data and key context populations.
Fig. 2: Genetic variation in the North Pontic Region.
Fig. 3: DATES estimates of timing of CLV and European farmer ancestry admixture.

Similar content being viewed by others

Data availability

Genotype data for individuals included in this study can be obtained from the Harvard Dataverse repository at https://doi.org/10.7910/DVN/CJTV3Q. The DNA sequences reported in this paper have been deposited in the European Nucleotide Archive under accession number PRJEB81468. Other newly reported data such as radiocarbon dates and archaeological context information are included in the manuscript and supplementary files.

References

  1. Gimbutas, M. A. Three waves of the Kurgan people into Old Europe, 4500–2500 B.C. J. Indo-Eur. Stud. 18, 240–268 (1997).

    MATH  Google Scholar 

  2. Anthony, D. W. The Horse, the Wheel, and Language: How Bronze-Age Riders from the Eurasian Steppes Shaped the Modern World (Princeton Univ. Press, 2007).

  3. Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  4. Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  5. Penske, S. et al. Early contact between late farming and pastoralist societies in southeastern Europe. Nature 620, 358–365 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mathieson, I. et al. The genomic history of southeastern Europe. Nature 555, 197–203 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  7. Lazaridis, I. et al. The genetic origin of the Indo-Europeans. Nature https://doi.org/10.1038/s41586-024-08531-5 (2024).

  8. de Barros Damgaard, P. et al. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science 360, eaar7711 (2018).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  9. Narasimhan, V. M. et al. The formation of human populations in South and Central Asia. Science 365, eaat7487 (2019).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  10. Lazaridis, I. et al. The genetic history of the Southern Arc: a bridge between West Asia and Europe. Science 377, eabm4247 (2022).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  11. Kroonen, G., Jakob, A., Palmér, A. I., van Sluis, P. & Wigman, A. Indo-European cereal terminology suggests a Northwest Pontic homeland for the core Indo-European languages. PLoS ONE 17, e0275744 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  13. Nikitin, A. G., Videiko, M., Patterson, N., Renson, V. & Reich, D. Interactions between Trypillian farmers and North Pontic forager-pastoralists in Eneolithic central Ukraine. PLoS ONE 18, e0285449 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Burdo, N. B. Kul’turno-istoricheskiye kontakty ranne-tripol’skikh plemen. In Drevneyshiye Obshchnosti Zemledel’tsev i Skotovodov Severnogo Prichernomor’ya (ed. Yarovoy, E. V.) 49–51 (Nauchno-issledovatel’skaya laboratoriya «Arkheologiya» PGU im.T. G. Shevchenko, 2002).

  15. Nikitin, A. G. et al. Mitochondrial DNA analysis of Eneolithic Trypillians from Ukraine reveals Neolithic farming genetic roots. PLoS ONE 12, e0172952 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nikitin, A. G., Sokhatsky, M. P., Kovaliukh, M. M. & Videiko, M. Y. Comprehensive site chronology and ancient mitochondrial DNA analysis from Verteba Cave—a Trypillian Culture site of Eneolithic Ukraine. Interdiscip. Archaeol. 1, 9–18 (2010).

    Google Scholar 

  17. Gelabert, P. et al. Genomes from Verteba cave suggest diversity within the Trypillians in Ukraine. Sci Rep. 12, 7242 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  18. Mattila, T. M. et al. Genetic continuity, isolation, and gene flow in Stone Age Central and Eastern Europe. Commun. Biol. 6, 793 (2023).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  19. Kotova, N. S. Early Eneolithic in the Pontic Steppes (British Archaeological Reports, 2008).

  20. Telegin, D. Ya. & Potekhina I. D. Neolithic Cemeteries and Populations in the Dnieper Basin (BAR International Series 383, 1987).

  21. Telegin, D. Y. Keramika rannʹoho eneolitu typu Zasukha v lisostepovomu Livoberezhzhi Ukrayiny. Arkheolohiya 64, 73–84 (1988).

    Google Scholar 

  22. Nielsen, R. et al. Tracing the peopling of the world through genomics. Nature 541, 302–310 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  23. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. https://doi.org/10.1371/journal.pgen.0020190 (2006).

  24. Lazaridis, I. et al. Ancient DNA from Mesopotamia suggests distinct Pre-Pottery and Pottery Neolithic migrations into Anatolia. Science 377, 982–987 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. South, A., Michael, S. & Massicotte, P. rnaturalearthdata: World vector map data from Natural Earth used in ‘rnaturalearth’. R package version 1.0.0.9000 https://github.com/ropensci/rnaturalearthdata, https://docs.ropensci.org/rnaturalearthdata/ (2024).

  26. Ecsedy, I. The People of the Pit-Grave Kurgans in Eastern Hungary (Akadémiai Kiadó, 1979).

  27. Govedarica, B. Zepterträger, Herrscher Der Steppen: Die Frühen Ockergräber Des Älteren Äneolithikums Im Karpatenbalkanischen Gebiet Und Im Steppenraum Südost-Und Osteuropas (Philipp von Zabern, 2004).

  28. Posth, C. et al. Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers. Nature 615, 117–126 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Haskevych, D. Late Mesolithic individuals of the Danube Iron Gates origin on the Dnipro River Rapids (Ukraine)? Archaeological and Bioarchaeological Records. Open Archaeol. 8, 1138–1169 (2022).

    Article  Google Scholar 

  30. Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  31. Skoglund, P. et al. Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers. Science 344, 747–750 (2014).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  32. Malmström, H. et al. The genomic ancestry of the Scandinavian Battle Axe culture people and their relation to the broader Corded Ware horizon. Proc. R. Soc. B 286, 20191528 (2019).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  33. Coutinho, A. et al. The Neolithic Pitted Ware culture foragers were culturally but not genetically influenced by the Battle Axe culture herders. Am. J. Phys. Anthropol. 172, 638–649 (2020).

    Article  PubMed  Google Scholar 

  34. Allentoft, M. E. et al. Population genomics of post-glacial western Eurasia. Nature 625, 301–311 (2024).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rassamakin, Y. Y. Mohylʹnyky Ihrenʹ (Ohrinʹ) 8 ta Oleksandriya doby eneolitu: problemy datuvannya ta kulʹturnoyi prynalezhnosti. Arhelogia 4, 26–48 (2017).

    Article  Google Scholar 

  36. Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  37. Chintalapati, M., Patterson, N. & Moorjani, P. The spatiotemporal patterns of major human admixture events during the European Holocene. eLife 11, e77625 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang, C.-C. et al. Ancient human genome-wide data from a 3000-year interval in the Caucasus corresponds with eco-geographic regions. Nat. Commun. 10, 590 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  39. Lazaridis, I. et al. Genetic origins of the Minoans and Mycenaeans. Nature 548, 214–218 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  40. Skourtanioti, E. et al. Ancient DNA reveals admixture history and endogamy in the prehistoric Aegean. Nat. Ecol. Evol. 7, 290–303 (2023).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  41. Clemente, F. et al. The genomic history of the Aegean palatial civilizations. Cell 184, 2565–2586.e21 (2021).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  42. Korobkova, G. F. & Shaposhnikova, O. G. Poselenie Mikhailovka: Etalonnyj Pamyatnik Drevneyamnoj Kultury (Evropejskij Dom, 2005).

  43. Kotova, N. S. Dereivskaya Kul’tura i Pamyatniki Nizhnemikhaylovskogo Tipa (Maidan: Kiev, Kharkov, 2013).

  44. Rassamakin, Y. Y. in Late Prehistoric Exploitation of the Eurasian Steppe (eds Levine, M. et al.) 59–182 (McDonald Institute Monographs, 1999).

  45. Nikitin, A. G. & Ivanova, S. in Steppe Transmissions (eds. Preda-Bălănică, B. & Ahola, M.) 9–27 (Archaeolingua, 2023); https://doi.org/10.33774/coe-2022-7m315.

  46. Gimbutas, M. The Indo-Europeanization of Europe: the intrusion of steppe pastoralists from south Russia and the transformation of Old Europe. Word 44, 205–222 (1993).

    Article  MATH  Google Scholar 

  47. Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Korlević, P. et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques 59, 87–93 (2015).

    Article  ADS  PubMed  Google Scholar 

  49. Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil-DNA-glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. B 370, 20130624 (2014).

    Article  Google Scholar 

  50. Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447–2461 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Prendergast, M. E. et al. Ancient DNA reveals a multistep spread of the first herders into sub-Saharan Africa. Science 365, eaaw6275 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  52. Gansauge, M.-T., Aximu-Petri, A., Nagel, S. & Meyer, M. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat. Protoc. 15, 2279–2300 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  54. Behar, D. M. et al. A “Copernican” reassessment of the human mitochondrial DNA tree from its root. Am. J. Hum. Genet. 90, 675–684 (2012).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  55. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  56. Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553–559 (2013).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  57. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15, 356 (2014).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  58. Briggs, A. W. et al. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res. 38, e87–e87 (2010).

    Article  PubMed  MATH  Google Scholar 

  59. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  60. Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 44, W58–W63 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  62. Shinde, V. et al. An ancient Harappan genome lacks ancestry from Steppe pastoralists or Iranian farmers. Cell 179, 729–735.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Harney, É. et al. Ancient DNA from Chalcolithic Israel reveals the role of population mixture in cultural transformation. Nat. Commun. 9, 3336 (2018).

    Article  ADS  PubMed  PubMed Central  MATH  Google Scholar 

  64. Rivollat, M. et al. Ancient genome-wide DNA from France highlights the complexity of interactions between Mesolithic hunter-gatherers and Neolithic farmers. Sci. Adv. 6, eaaz5344 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Reich, D. et al. Reconstructing Native American population history. Nature 488, 370–374 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  66. Skoglund, P. et al. Reconstructing prehistoric African population structure. Cell 171, 59–71.e21 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, K. et al. Ancient genomes reveal complex patterns of population movement, interaction, and replacement in sub-Saharan Africa. Sci. Adv. 6, eaaz0183 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lipson, M. et al. Ancient DNA and deep population structure in sub-Saharan African foragers. Nature 603, 290–296 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  69. Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  70. Jones, E. R. et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 6, 8912 (2015).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  71. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19, 1655–1664 (2009).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  72. Fenner, J. N. Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies. Am. J. Phys. Anthropol. 128, 415–423 (2005).

    Article  PubMed  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank D. Anthony for a critical review of a manuscript draft; N. Burdo, E. Kaiser, Y. Rassamakin and S. Razumov for stimulating discussions; S. Agulnikov, J. Burger, T. Demchenko, V. Haheu, V. Sinica, M. Sokhatsky and E. Yarovoy for sharing samples; I. Olalde for bioinformatic support; and R. Bernardos, N. Broomandkhoshbacht, N. Adamski, M. Ferry, I. Greenslade, Z. Zhang, K. Stewardson and A. Locher for technical support. We acknowledge the Institute of Archaeology at the National Academy of Sciences of Ukraine in Kyiv, and the National History Museum of Moldova in Chișinău, as the leading institutions dedicated to preserving prehistoric cultural heritage in the two countries from which most of the newly reported samples in this study come. We acknowledge the contribution of Ukrainian archaeologists Mykola Makarenko (1877–1938) and Dmytro Telegin (1919–2011) as leaders of the excavations that produced many of the samples featured in this report and for providing the theoretical groundwork that inspired many of the hypotheses tested here. The research was supported by GVSU Faculty Development and Student Research funds to A.G.N. and S.S. We acknowledge support from the National Science Foundation (grants BCS-0922374 and BCS-2208558 supporting V.R.); the National Institutes of Health (HG012287); the John Templeton Foundation (grant 61220); from Jean-Francois Clin; from the Allen Discovery Center, a Paul G. Allen Frontiers Group advised programme of the Paul G. Allen Family Foundation (D.R.); and from the Howard Hughes Medical Institute (D.R.). The author-accepted version of this article, that is, the version not reflecting proofreading and editing and formatting changes following the article’s acceptance, is subject to the Howard Hughes Medical Institute (HHMI) Open Access to Publications policy, as HHMI lab heads have previously granted a nonexclusive CC BY 4.0 license to the public and a sublicensable license to HHMI in their research articles. Pursuant to those licences, the author-accepted manuscript can be made freely available under a CC BY 4.0 license immediately upon publication.

Author information

Authors and Affiliations

Authors

Contributions

A.G.N., I.L., S.I., V.D., M.L. I.P. and D.R. conceived the study. A.G.N., I.L., N.P. and D.R. supervised data analysis. A.G.N., S.S., V.R. and D.R. secured funding for the study. A.G.N., S.I., M.V., V.D., N.K., M.L., I.P., M.K.-N., S.L., S.M., H.S., G.S. and T.T. provided samples for the study. I.L., N.P. and D.R. supervised or performed statistical analyses. A.G.N., V.R., S.S., K.C., E.C., E.H., L.I., A.M.L., M. Michel, M. Mah, A.M., J.O., L.Q., J.N.W., F.Z., S. Mallick and N.R. performed laboratory and bioinformatic analyses. A.G.N. and A.K. curated the samples. N.P., M.L., N.K., S.M., S.L., H.S., S.S., P.W. and D.R. critically reviewed and edited manuscript files. A.G.N. and I.L. wrote the manuscript with input from all co-authors.

Corresponding authors

Correspondence to Alexey G. Nikitin, Iosif Lazaridis or David Reich.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Kristian Kristiansen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer review reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Admixture proportions of 4-source model with Trypillians as the 4th source.

Plotted populations fit the model (p > 0.05) and we only show populations where the RMSE of standard errors (S.E.) is less than 10% of the point estimate (shown above each bar). For full list of tested populations and alternative choices of modelling, see Supplementary Information Section 2, Appendix I. Sample sizes are in Online Table 4 of ref. 7.

Extended Data Fig. 2 Admixture proportions of 4-source model with Steppe Maykop as the 4th source.

Plotted populations fit the model (p > 0.05) and we only show populations where the RMSE of standard errors (S.E.) is less than 10% of the point estimate (shown above each bar). For full list of tested populations including sample sizes and alternative choices of modelling, see Supplementary Information Section 2, Appendix II. Sample sizes are in Online Table 4 of ref. 7.

Extended Data Table 1 Statistics of the form f3(Source1, Source2; Test)
Extended Data Table 2 Ancestry of UNHG individuals
Extended Data Table 3 By-individual modelling of Trypillians
Extended Data Table 4 Genetic profiles of individuals in the North Pontic Region 4500-2500 BCE are well described as a result of three expansion waves: two waves of Caucasus-Lower Volga (CLV) cline expansion and a wave of Yamna expansion (expanded version of Table 1)

Supplementary information

Supplementary Information

Supplementary Information sections 1–4, including Supplementary Figures and Tables – see Contents for details.

Reporting Summary

Peer Review file

Supplementary Tables

Supplementary Tables 1–5

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, A.G., Lazaridis, I., Patterson, N. et al. A genomic history of the North Pontic Region from the Neolithic to the Bronze Age. Nature 639, 124–131 (2025). https://doi.org/10.1038/s41586-024-08372-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-08372-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing