Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Light-harvesting microelectronic devices for wireless electrosynthesis

Abstract

High-throughput experimentation (HTE) has accelerated academic and industrial chemical research in reaction development and drug discovery and has been broadly applied in many domains of organic chemistry1,2. However, application of HTE in electrosynthesis—an enabling tool for chemical synthesis—has been limited by a dearth of suitable standardized reactors3,4,5,6,7. Here we report the development of microelectronic devices, which are produced using standard nanofabrication techniques, to enable wireless electrosynthesis on the microlitre scale. These robust and inexpensive devices are powered by visible light and convert any traditional 96-well or 384-well plate into an electrochemical reactor. We validate the devices in oxidative, reductive and paired electrolysis and further apply them to achieve the library synthesis of biologically active compounds and accelerate the development of two electrosynthetic methodologies. We anticipate that, by simplifying the way electrochemical reactions are set up, this user-friendly solution will not only enhance the experience and efficiency of current practitioners but also substantially reduce the barrier for nonspecialists to enter the field of electrosynthesis, thus allowing the broader community of synthetic chemists to explore and benefit from new reactivities and synthetic strategies enabled by electrochemistry8,9,10,11,12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Wireless electrosynthesis using visible-light-powered microelectronic devices.
Fig. 2: Validation of SPECS for use in known electrosynthetic transformations.
Fig. 3: Application of SPECS in a tandem electrochemical–chemical transformation, electrophotocatalysis and library synthesis.
Fig. 4: Development of a one-step aza-Shono coupling.
Fig. 5: SPECS-enabled methodology development.

Similar content being viewed by others

Data availability

All data supporting the findings of this work are available in the paper and its Supplementary Information.

References

  1. Mennen, S. M. et al. The evolution of high-throughput experimentation in pharmaceutical development and perspectives on the future. Org. Process Res. Dev. 23, 1213–1242 (2019).

    Article  CAS  MATH  Google Scholar 

  2. Buitrago Santanilla, A. et al. Nanomole-scale high-throughput chemistry for the synthesis of complex molecules. Science 347, 49–53 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Wills, A. G. et al. High-throughput electrochemistry: state of the art, challenges, and perspective. Org. Process Res. Dev. 25, 2587–2600 (2021).

    Article  CAS  MATH  Google Scholar 

  4. Gütz, C., Klöckner, B. & Waldvogel, S. R. Electrochemical screening for electroorganic synthesis. Org. Process Res. Dev. 20, 26–32 (2016).

    Article  MATH  Google Scholar 

  5. Rein, J., Lin, S., Kalyani, D. & Lehnherr, D. in The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis (Volume 1) Vol. 1419 (eds Emmert, M. H., Jouffroy, M. & Leitch, D. C.) 167–187 (American Chemical Society, 2022).

  6. Chen, H. & Mo, Y. Accelerated electrosynthesis development enabled by high-throughput experimentation. Synthesis 55, 2817–2832 (2023).

    Article  CAS  MATH  Google Scholar 

  7. Graaf, M. D. & Moeller, K. D. Introduction to microelectrode arrays, the site-selective functionalization of electrode surfaces, and the real-time detection of binding events. Langmuir 31, 7697–7706 (2015).

    Article  CAS  PubMed  MATH  Google Scholar 

  8. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  9. Novaes, L. F. T. et al. Electrocatalysis as an enabling technology for organic synthesis. Chem. Soc. Rev. 50, 7941–8002 (2021).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  10. Zhu, C., Ang, N. W. J., Meyer, T. H., Qiu, Y. & Ackermann, L. Organic electrochemistry: molecular syntheses with potential. ACS Cent. Sci. 7, 415–431 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wiebe, A. et al. Electrifying organic synthesis. Angew. Chem. Int. Ed. 57, 5594–5619 (2018).

    Article  ADS  CAS  MATH  Google Scholar 

  12. Little, R. D. & Moeller, K. D. Introduction: electrochemistry: technology, synthesis, energy, and materials. Chem. Rev. 118, 4483–4484 (2018).

    Article  CAS  PubMed  MATH  Google Scholar 

  13. Kolbe, H. Zersetzung der Valeriansäure durch den elektrischen Strom. Ann. Chem. Pharm. 64, 339–341 (1848).

    Article  MATH  Google Scholar 

  14. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemistry: calling all engineers. Angew. Chem. Int. Ed. 57, 4149–4155 (2018).

    Article  CAS  Google Scholar 

  15. Gesmundo, N. J. et al. Nanoscale synthesis and affinity ranking. Nature 557, 228–232 (2018).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  16. Hendrick, C. E. et al. Direct-to-biology accelerates PROTAC synthesis and the evaluation of linker effects on permeability and degradation. ACS Med. Chem. Lett. 13, 1182–1190 (2022).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  17. Stevens, R. et al. Integrated direct-to-biology platform for the nanoscale synthesis and biological evaluation of PROTACs. J. Med. Chem. 66, 15437–15452 (2023).

    Article  CAS  PubMed  MATH  Google Scholar 

  18. Siu, T., Li, W. & Yudin, A. K. Parallel electrosynthesis of α-alkoxycarbamates, α-alkoxyamides, and α-alkoxysulfonamides using the spatially addressable electrolysis platform (SAEP). J. Comb. Chem. 2, 545–549 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Palkowitz, M. D. et al. Overcoming limitations in decarboxylative arylation via Ag–Ni electrocatalysis. J. Am. Chem. Soc. 144, 17709–17720 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rein, J. et al. Unlocking the potential of high-throughput experimentation for electrochemistry with a standardized microscale reactor. ACS Cent. Sci. 7, 1347–1355 (2021).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  21. Gerroll, B. H. R., Kulesa, K. M., Ault, C. A. & Baker, L. A. Legion: an instrument for high-throughput electrochemistry. ACS Meas. Sci. Au 3, 371–379 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miskin, M. Z. et al. Electronically integrated, mass-manufactured, microscopic robots. Nature 584, 557–561 (2020).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  23. Chen, J. & Mo, Y. Wireless electrochemical reactor for accelerated exploratory study of electroorganic synthesis. ACS Cent. Sci. 9, 1820–1826 (2023).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  24. Molnar, A. C. et al. in Proc. 2021 IEEE Custom Integrated Circuits Conference (CICC) 1–6 (IEEE, 2021).

  25. Ravetz, B. D. et al. Development of a platform for near-infrared photoredox catalysis. ACS Cent. Sci. 6, 2053–2059 (2020).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  26. Pijper, B. et al. Addressing reproducibility challenges in high-throughput photochemistry. JACS A 4, 2585–2595 (2024).

    Article  CAS  MATH  Google Scholar 

  27. Qi, N. et al. Development of a high intensity parallel photoreactor for high throughput screening. React. Chem. Eng. 7, 354–360 (2022).

    Article  CAS  MATH  Google Scholar 

  28. Flamm, K. Measuring Moore’s Law: evidence from price, cost, and quality indexes. National Bureau of Economic Research Working Paper Series No. 24553. https://www.nber.org/papers/w24553 (2018).

  29. Kirste, A., Elsler, B., Schnakenburg, G. & Waldvogel, S. R. Efficient anodic and direct phenol-arene C,C cross-coupling: the benign role of water or methanol. J. Am. Chem. Soc. 134, 3571–3576 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Hoque, M. A. et al. Electrochemical PINOylation of methylarenes: improving the scope and utility of benzylic oxidation through mediated electrolysis. J. Am. Chem. Soc. 144, 15295–15302 (2022).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  31. Siu, J. C., Parry, J. B. & Lin, S. Aminoxyl-catalyzed electrochemical diazidation of alkenes mediated by a metastable charge-transfer complex. J. Am. Chem. Soc. 141, 2825–2831 (2019).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  32. Lehnherr, D. et al. Electrochemical synthesis of hindered primary and secondary amines via proton-coupled electron transfer. J. Am. Chem. Soc. 142, 468–478 (2020).

    Article  CAS  PubMed  MATH  Google Scholar 

  33. Zhang, B. et al. Ni-electrocatalytic Csp3–Csp3 doubly decarboxylative coupling. Nature 606, 313–318 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Costa e Silva, R. et al. Electrosynthesis of aryliminophosphoranes in continuous flow. Adv. Synth. Catal. 366, 955–960 (2024).

    Article  CAS  MATH  Google Scholar 

  35. Imada, Y. et al. Metal- and reagent-free dehydrogenative formal benzyl–aryl cross-coupling by anodic activation in 1,1,1,3,3,3-hexafluoropropan-2-ol. Angew. Chem. Int. Ed. 57, 12136–12140 (2018).

    Article  CAS  MATH  Google Scholar 

  36. Huang, H. et al. Electrophotocatalysis with a trisaminocyclopropenium radical dication. Angew. Chem. Int. Ed. 58, 13318–13322 (2019).

    Article  CAS  Google Scholar 

  37. Qiu, Y., Struwe, J., Meyer, T. H., Oliveira, J. C. A. & Ackermann, L. Catalyst- and reagent-free electrochemical azole C–H amination. Chem. Eur. J. 24, 12784–12789 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Anthony Romero, F. et al. The discovery of potent antagonists of NPBWR1 (GPR7). Bioorg. Med. Chem. Lett. 22, 1014–1018 (2012).

    Article  CAS  PubMed  MATH  Google Scholar 

  39. Thomas, R. P. et al. A direct-to-biology high-throughput chemistry approach to reactive fragment screening. Chem. Sci. 12, 12098–12106 (2021).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  40. Wan, Z. et al. Electrochemical oxidative C(sp3)–H azolation of lactams under mild conditions. Green Chem. 22, 3742–3747 (2020).

    Article  CAS  MATH  Google Scholar 

  41. Libendi, S. S., Demizu, Y. & Onomura, O. Direct electrochemical α-cyanation of N-protected cyclic amines. Org. Biomol. Chem. 7, 351–356 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Tajima, T. & Nakajima, A. Direct oxidative cyanation based on the concept of site isolation. J. Am. Chem. Soc. 130, 10496–10497 (2008).

    Article  CAS  PubMed  MATH  Google Scholar 

  43. Mäder, P. & Kattner, L. Sulfoximines as rising stars in modern drug discovery? Current status and perspective on an emerging functional group in medicinal chemistry. J. Med. Chem. 63, 14243–14275 (2020).

    Article  PubMed  Google Scholar 

  44. Sun, Q. et al. Cascade reactions of aryl-substituted terminal alkynes involving in situ-generated α-imino gold carbenes. Angew. Chem. Int. Ed. 63, e202313738 (2024).

    Article  CAS  Google Scholar 

  45. Xie, X. & Sun, J. [4+3]-cycloaddition reaction of sulfilimines with cyclobutenones: access to benzazepinones. Org. Lett. 23, 8921–8925 (2021).

    Article  CAS  PubMed  MATH  Google Scholar 

  46. Tian, X. et al. Sulfilimines as versatile nitrene transfer reagents: facile access to diverse aza-heterocycles. Angew. Chem. Int. Ed. 58, 3589–3593 (2019).

    Article  CAS  MATH  Google Scholar 

  47. Okamura, H. & Bolm, C. Sulfoximines: synthesis and catalytic applications. Chem. Lett. 33, 482–487 (2004).

    Article  CAS  MATH  Google Scholar 

  48. Klein, M., Troglauer, D. L. & Waldvogel, S. R. Dehydrogenative imination of low-valent sulfur compounds─fast and scalable synthesis of sulfilimines, sulfinamidines, and sulfinimidate esters. JACS Au 3, 575–583 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bandlish, B. K., Padilla, A. G. & Shine, H. J. Ion radicals. XXXIII. Reactions of 10-methyl- and 10-phenylphenothiazine cation radicals with ammonia and amines. Preparation and reactions of 5-(N-alkyl)sulfilimines and 5-(N,N-dialkylamino)sulfonium salts. J. Org. Chem. 40, 2590–2595 (1975).

    Article  CAS  Google Scholar 

  50. Shine, H. J. & Kim, K. Cation radicals. XXVII. Sulfilimine derivatives from reaction of thianthrene and N-phenylphenothiazine cation radicals with t-butylamine and dimethylamine. Tetrahedron Lett. 15, 99–101 (1974).

    Article  MATH  Google Scholar 

  51. Marzag, H., Schuler, M., Tatibouët, A. & Reboul, V. Synthesis of methionine-derived endocyclic sulfilimines and sulfoximines. Eur. J. Org. Chem. 2017, 896–900 (2017).

    Article  CAS  Google Scholar 

  52. Luan, D. et al. Cyclic regulation of the sulfilimine bond in peptides and NC1 hexamers via the HOBr/H2Se conjugated system. Anal. Chem. 90, 9523–9528 (2018).

    Article  CAS  PubMed  MATH  Google Scholar 

  53. Dannenberg, C. A., Bizet, V. & Bolm, C. Direct access to N-alkylsulfoximines from sulfides by a sequential imidation/oxidation procedure. Synthesis 47, 1951–1959 (2015).

    Article  CAS  MATH  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Institutes of Health (R01GM130928), the Camille and Henry Dreyfus Foundation, the College of Arts and Sciences at Cornell University (New Frontier Grant), the Cornell Center for Materials Research (DMR1719875) and the Cornell Ignite Innovation Acceleration programme. This work was performed in part at the Cornell NanoScale Facility, a member of the National Nanotechnology Coordinated Infrastructure (NNCI), which was supported by the National Science Foundation grant NNCI-2025233. We thank S. B. Zacate for experimental assistance; Cornell NanoScale Facility staff for guidance and support with the fabrication process; D. Kalyani, D. Lehnherr and M. K. Wismer for helpful discussion; I. Keresztes for nuclear magnetic resonance data analysis; J. Liu and W. Yue for data reproduction; L. Baker for providing a photograph of the Legion electrochemistry system; and K. Meinhaus for copyediting the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.L., P.L.M. and J.R. conceived the project. S.L. and P.L.M. supervised the project. B.G. and J.R. conducted all synthetic experiments. B.G., S.N. and Y.J. designed and manufactured the devices. B.G., J.R. and S.L. wrote the initial draft of the manuscript. S.N., Y.J. and P.L.M. assisted in writing and editing the manuscript.

Corresponding authors

Correspondence to Paul L. McEuen or Song Lin.

Ethics declarations

Competing interests

A US provisional patent (no. 63/592,209) was filed on the SPECS technology. S.L. and P.L.M. are commercializing the SPECS technology.

Peer review

Peer review information

Nature thanks Alastair Lennox and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–11, including Supplementary Figs., Text and Data – see Contents for details.

Peer Review file

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Górski, B., Rein, J., Norris, S. et al. Light-harvesting microelectronic devices for wireless electrosynthesis. Nature 637, 354–361 (2025). https://doi.org/10.1038/s41586-024-08373-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-08373-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing