Abstract
Recent discoveries from time-___domain surveys are defying our expectations for how matter accretes onto supermassive black holes (SMBHs). The increased rate of short-timescale, repetitive events around SMBHs, including the recently discovered quasi-periodic eruptions1,2,3,4,5, are garnering further interest in stellar-mass companions around SMBHs and the progenitors to millihertz-frequency gravitational-wave events. Here we report the discovery of a highly significant millihertz quasi-periodic oscillation (QPO) in an actively accreting SMBH, 1ES 1927+654, which underwent a major optical, ultraviolet and X-ray outburst beginning in 20186,7. The QPO was detected in 2022 with a roughly 18-minute period, corresponding to coherent motion on a scale of less than 10 gravitational radii, much closer to the SMBH than typical quasi-periodic eruptions. The period decreased to 7.1 minutes over 2 years with a decelerating period evolution (\(\ddot{P}\) greater than zero). To our knowledge, this evolution has never been seen in SMBH QPOs or high-frequency QPOs in stellar-mass black holes. Models invoking orbital decay of a stellar-mass companion struggle to explain the period evolution without stable mass transfer to offset angular-momentum losses, and the lack of a direct analogue to stellar-mass black-hole QPOs means that many instability models cannot explain all of the observed properties of the QPO in 1ES 1927+654. Future X-ray monitoring will test these models, and if it is a stellar-mass orbiter, the Laser Interferometer Space Antenna (LISA) should detect its low-frequency gravitational-wave emission.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
27,99 € / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
199,00 € per year
only 3,90 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
Data availability
All the data used in this work are publicly available through XMM-SAS.
Code availability
The spectra, light curves and code used to analyse the data and produce all figures have been made publicly available on CodeOcean and GitHub (https://github.com/memasterson/1ES1927_mHzQPO/).
References
Miniutti, G. et al. Nine-hour X-ray quasi-periodic eruptions from a low-mass black hole galactic nucleus. Nature 573, 381–384 (2019).
Giustini, M., Miniutti, G. & Saxton, R. D. X-ray quasi-periodic eruptions from the galactic nucleus of RX J1301.9+2747. Astron. Astrophys. 636, L2 (2020).
Arcodia, R. et al. X-ray quasi-periodic eruptions from two previously quiescent galaxies. Nature 592, 704–707 (2021).
Chakraborty, J. et al. Possible X-ray quasi-periodic eruptions in a tidal disruption event candidate. Astrophys. J. Lett. 921, L40 (2021).
Arcodia, R. et al. The more the merrier: SRG/eROSITA discovers two further galaxies showing X-ray quasi-periodic eruptions. Astron. Astrophys. 684, A64 (2024).
Trakhtenbrot, B. et al. 1ES 1927+654: an AGN caught changing look on a timescale of months. Astrophys. J. 883, 94 (2019).
Ricci, C. et al. The destruction and recreation of the X-ray corona in a changing-look active galactic nucleus. Astrophys. J. Lett. 898, L1 (2020).
Li, R. et al. The host galaxy and rapidly evolving broad-line region in the changing-look active galactic nucleus 1ES 1927+654. Astrophys. J. 933, 70 (2022).
Boller, T. et al. 1ES 1927+654: persistent and rapid X-ray variability in an AGN with low intrinsic neutral X-ray absorption and narrow optical emission lines. Astron. Astrophys. 397, 557–564 (2003).
Tran, H. D., Lyke, J. E. & Mader, J. A. Indecent exposure in Seyfert 2 galaxies: a close look. Astrophys. J. Lett. 726, L21 (2011).
Gallo, L. C. et al. 1ES 1927+654: a bare Seyfert 2. Mon. Not. R. Astron. Soc. 433, 421–433 (2013).
Ricci, C. et al. The 450 day X-ray monitoring of the changing-look AGN 1ES 1927+654. Astrophys. J. Suppl. Ser. 255, 7 (2021).
Masterson, M. et al. Evolution of a relativistic outflow and X-ray corona in the extreme changing-look AGN 1ES 1927+654. Astrophys. J. 934, 35 (2022).
Laha, S. et al. A radio, optical, UV, and X-ray view of the enigmatic changing-look active galactic nucleus 1ES 1927+654 from its pre- to postflare states. Astrophys. J. 931, 5 (2022).
Ghosh, R. et al. A reemerging bright soft X-ray state of the changing-look active galactic nucleus 1ES 1927+654: a multiwavelength view. Astrophys. J. 955, 3 (2023).
Liu, Z. et al. X-ray spectral properties of the AGN sample in the northern XMM-XXL field. Mon. Not. R. Astron. Soc. 459, 1602–1625 (2016).
Vaughan, S. & Uttley, P. Where are the X-ray quasi-periodic oscillations in active galaxies? Mon. Not. R. Astron. Soc. 362, 235–244 (2005).
Gierliński, M., Middleton, M., Ward, M. & Done, C. A periodicity of ~1 hour in X-ray emission from the active galaxy RE J1034+396. Nature 455, 369–371 (2008).
Alston, W. N., Markeviciute, J., Kara, E., Fabian, A. C. & Middleton, M. Detection of a QPO in five XMM-Newton observations of RE J1034+396. Mon. Not. R. Astron. Soc. 445, L16–L20 (2014).
Pasham, D. R. et al. A loud quasi-periodic oscillation after a star is disrupted by a massive black hole. Science 363, 531–534 (2019).
Lin, D., Irwin, J. A., Godet, O., Webb, N. A. & Barret, D. A ~3.8 hr periodicity from an ultrasoft active galactic nucleus candidate. Astrophys. J. Lett. 776, L10 (2013).
Lin, D. et al. Large decay of X-ray flux in 2XMM J123103.2+110648: evidence for a tidal disruption event. Mon. Not. R. Astron. Soc. 468, 783–789 (2017).
Webbe, R. & Young, A. J. Variability in a low-mass active galactic nucleus: oscillation or eruption? Mon. Not. R. Astron. Soc. 518, 3428–3440 (2023).
Timmer, J. & König, M. On generating power law noise. Astron. Astrophys. 300, 707 (1995).
Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19, 716–723 (1974).
Xia, R., Liu, H. & Xue, Y. First observational evidence for an interconnected evolution between time lag and QPO frequency among AGNs. Astrophys. J. Lett. 961, L32 (2024).
Remillard, R. A. & McClintock, J. E. X-ray properties of black-hole binaries. Annu. Rev. Astron. Astrophys. 44, 49–92 (2006).
Ingram, A. R. & Motta, S. E. A review of quasi-periodic oscillations from black hole X-ray binaries: observation and theory. New Astron. Rev. 85, 101524 (2019).
Wevers, T., Pasham, D. R., Jalan, P., Rakshit, S. & Arcodia, R. Host galaxy properties of quasi-periodically erupting X-ray sources. Astron. Astrophys. 659, L2 (2022).
Terashima, Y., Kamizasa, N., Awaki, H., Kubota, A. & Ueda, Y. A candidate active galactic nucleus with a pure soft thermal X-ray spectrum. Astrophys. J. 752, 154 (2012).
Miniutti, G. et al. A high Eddington-ratio, true Seyfert 2 galaxy candidate: implications for broad-line region models. Mon. Not. R. Astron. Soc. 433, 1764–1777 (2013).
Sun, L., Shu, X. & Wang, T. RX J1301.9+2747: a highly variable Seyfert galaxy with extremely soft X-ray emission. Astrophys. J. 768, 167 (2013).
Franchini, A. et al. Quasi-periodic eruptions from impacts between the secondary and a rigidly precessing accretion disc in an extreme mass-ratio inspiral system. Astron. Astrophys. 675, A100 (2023).
Linial, I. & Metzger, B. D. EMRI + TDE = QPE: periodic X-ray flares from star-disk collisions in galactic nuclei. Astrophys. J. 957, 34 (2023).
Lu, W. & Quataert, E. Quasi-periodic eruptions from mildly eccentric unstable mass transfer in galactic nuclei. Mon. Not. R. Astron. Soc. 524, 6247–6266 (2023).
King, A. Quasi-periodic eruptions from galaxy nuclei. Mon. Not. R. Astron. Soc. 515, 4344–4349 (2022).
Marsh, T. R., Nelemans, G. & Steeghs, D. Mass transfer between double white dwarfs. Mon. Not. R. Astron. Soc. 350, 113–128 (2004).
Remillard, R. A., Muno, M. P., McClintock, J. E. & Orosz, J. A. Evidence for harmonic relationships in the high-frequency quasi-periodic oscillations of XTE J1550−564 and GRO J1655−40. Astrophys. J. 580, 1030–1042 (2002).
Remillard, R. A., McClintock, J. E., Orosz, J. A. & Levine, A. M. The X-ray outburst of H1743−322 in 2003: high-frequency QPOs with a 3:2 frequency ratio. Astrophys. J. 637, 1002–1009 (2006).
Belloni, T. M., Sanna, A. & Méndez, M. High-frequency quasi-periodic oscillations in black hole binaries. Mon. Not. R. Astron. Soc. 426, 1701–1709 (2012).
Vignarca, F., Migliari, S., Belloni, T., Psaltis, D. & van der Klis, M. Tracing the power-law component in the energy spectrum of black hole candidates as a function of the QPO frequency. Astron. Astrophys. 397, 729–738 (2003).
Stella, L., Vietri, M., & Morsink, S. M. Correlations in the quasi-periodic oscillation frequencies of low-mass X-ray binaries and the relativistic precession model. Astrophys. J. Lett. 524, L63–L66 (1999).
Ingram, A., Done, C. & Fragile, P. C. Low-frequency quasi-periodic oscillations spectra and Lense–Thirring precession. Mon. Not. R. Astron. Soc. 397, L101–L105 (2009).
Nixon, C., King, A., Price, D. & Frank, J. Tearing up the disk: how black holes accrete. Astrophys. J. Lett. 757, L24 (2012).
Liska, M. et al. Disc tearing and Bardeen–Petterson alignment in GRMHD simulations of highly tilted thin accretion discs. Mon. Not. R. Astron. Soc. 507, 983–990 (2021).
Musoke, G., Liska, M., Porth, O., van der Klis, M. & Ingram, A. Disc tearing leads to low and high frequency quasi-periodic oscillations in a GRMHD simulation of a thin accretion disc. Mon. Not. R. Astron. Soc. 518, 1656–1671 (2023).
Kaaz, N. et al. Nozzle shocks, disk tearing, and streamers drive rapid accretion in 3D GRMHD simulations of warped thin disks. Astrophys. J. 955, 72 (2023).
Meyer, E. T. et al. Emergence of a radio jet in the changing-look AGN 1ES 1927+654. Preprint at https://arxiv.org/abs/2406.18061 (2024).
Cabanac, C. et al. Variability of X-ray binaries from an oscillating hot corona. Mon. Not. R. Astron. Soc. 404, 738–748 (2010).
Buisson, D. J. K. et al. MAXI J1820+070 with NuSTAR I. An increase in variability frequency but a stable reflection spectrum: coronal properties and implications for the inner disc in black hole binaries. Mon. Not. R. Astron. Soc. 490, 1350–1362 (2019).
Jansen, F. et al. XMM-Newton observatory. I. The spacecraft and operations. Astron. Astrophys. 365, L1–L6 (2001).
Gendreau, K. C. et al. The Neutron star Interior Composition Explorer (NICER): design and development. In Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, Society of Photo-Optical Instrumentation Engineers Conference Series Vol 9905 (eds den Herder, J.-W. A. et al.) 99051H (SPIE, 2016).
Remillard, R. A. et al. An empirical background model for the NICER X-ray timing instrument. Astron. J. 163, 130 (2022).
Vaughan, S., Edelson, R., Warwick, R. S. & Uttley, P. On characterizing the variability properties of X-ray light curves from active galaxies. Mon. Not. R. Astron. Soc. 345, 1271–1284 (2003).
Wilkins, D. R. Low-frequency X-ray timing with Gaussian processes and reverberation in the radio-loud AGN 3C 120. Mon. Not. R. Astron. Soc. 489, 1957–1972 (2019).
Vaughan, S. A simple test for periodic signals in red noise. Astron. Astrophys. 431, 391–403 (2005).
González-Martín, O. & Vaughan, S. X-ray variability of 104 active galactic nuclei. XMM-Newton power-spectrum density profiles. Astron. Astrophys. 544, A80 (2012).
Uttley, P., McHardy, I. M. & Papadakis, I. E. Measuring the broad-band power spectra of active galactic nuclei with RXTE. Mon. Not. R. Astron. Soc. 332, 231–250 (2002).
Markowitz, A. et al. X-ray fluctuation power spectral densities of Seyfert 1 galaxies. Astrophys. J. 593, 96–114 (2003).
McHardy, I. M., Papadakis, I. E., Uttley, P., Page, M. J. & Mason, K. O. Combined long and short time-scale X-ray variability of NGC 4051 with RXTE and XMM-Newton. Mon. Not. R. Astron. Soc. 348, 783–801 (2004).
McHardy, I. M., Koerding, E., Knigge, C., Uttley, P. & Fender, R. P. Active galactic nuclei as scaled-up Galactic black holes. Nature 444, 730–732 (2006).
Belloni, T., Psaltis, D. & van der Klis, M. A unified description of the timing features of accreting X-ray binaries. Astrophys. J. 572, 392–406 (2002).
Vaughan, S. A Bayesian test for periodic signals in red noise. Mon. Not. R. Astron. Soc. 402, 307–320 (2010).
Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).
Sugiura, N. Further analysis of the data by akaike’s information criterion and the finite corrections. Commun. Stat. Theory Methods 7, 13–26 (1978).
Emmanoulopoulos, D. et al. A search for X-ray reprocessing echoes in the power spectral density functions of AGN. Mon. Not. R. Astron. Soc. 461, 1642–1655 (2016).
Ashton, D. I. & Middleton, M. J. Searching for energy-resolved quasi-periodic oscillations in AGN. Mon. Not. R. Astron. Soc. 501, 5478–5499 (2021).
Li, R. et al. The interplay between the disk and corona of the changing-look active galactic nucleus 1ES 1927+654. Astrophys. J. 975, 140 (2024).
Heil, L. M., Uttley, P. & Klein-Wolt, M. Inclination-dependent spectral and timing properties in transient black hole X-ray binaries. Mon. Not. R. Astron. Soc. 448, 3348–3353 (2015).
Motta, S. E. et al. Geometrical constraints on the origin of timing signals from black holes. Mon. Not. R. Astron. Soc. 447, 2059–2072 (2015).
van den Eijnden, J. et al. Inclination dependence of QPO phase lags in black hole X-ray binaries. Mon. Not. R. Astron. Soc. 464, 2643–2659 (2017).
Ingram, A. et al. A quasi-periodic modulation of the iron line centroid energy in the black hole binary H1743−322. Mon. Not. R. Astron. Soc. 461, 1967–1980 (2016).
Nathan, E. et al. Phase-resolved spectroscopy of a quasi-periodic oscillation in the black hole X-ray binary GRS 1915+105 with NICER and NuSTAR. Mon. Not. R. Astron. Soc. 511, 255–279 (2022).
Soleri, P., Belloni, T. & Casella, P. A transient low-frequency quasi-periodic oscillation from the black hole binary GRS 1915+105. Mon. Not. R. Astron. Soc. 383, 1089–1102 (2008).
Homan, J. et al. A rapid change in X-ray variability and a jet ejection in the black hole transient MAXI J1820+070. Astrophys. J. Lett. 891, L29 (2020).
Motta, S., Muñoz-Darias, T., Casella, P., Belloni, T. & Homan, J. Low-frequency oscillations in black holes: a spectral-timing approach to the case of GX 339−4. Mon. Not. R. Astron. Soc. 418, 2292–2307 (2011).
Morgan, E. H., Remillard, R. A. & Greiner, J. RXTE observations of QPOs in the black hole candidate GRS 1915+105. Astrophys. J. 482, 993–1010 (1997).
Remillard, R. A., Morgan, E. H., McClintock, J. E., Bailyn, C. D. & Orosz, J. A. RXTE observations of 0.1-300 Hz quasi-periodic oscillationsin the microquasar GRO J1655−40. Astrophys. J. 522, 397–412 (1999).
Remillard, R. A. et al. X-ray nova XTE J1550−564: discovery of a quasi-periodic oscillation near 185 Hz. Astrophys. J. Lett. 517, L127–L130 (1999).
Homan, J. et al. Correlated X-ray spectral and timing behavior of the black hole candidate XTE J1550−564: a new interpretation of black hole states. Astrophys. J. Suppl. Ser. 132, 377–402 (2001).
Miller, J. M. et al. High-frequency quasi-periodic oscillations in the 2000 outburst of the galactic microquasar XTE J1550−564. Astrophys. J. 563, 928–933 (2001).
Strohmayer, T. E. Discovery of a 450 Hz quasi-periodic oscillation from the microquasar GRO J1655−40 with the Rossi X-ray timing explorer. Astrophys. J. Lett. 552, L49–L53 (2001).
Motta, S. E. et al. Black hole spin measurements through the relativistic precession model: XTE J1550−564. Mon. Not. R. Astron. Soc. 439, L65–L69 (2014).
Abramowicz, M. A. & Kluźniak, W. A precise determination of black hole spin in GRO J1655−40. Astron. Astrophys. 374, L19–L20 (2001).
Abramowicz, M. A., Karas, V., Kluzniak, W., Lee, W. H. & Rebusco, P. Non-linear resonance in nearly geodesic motion in low-mass X-ray binaries. Publ. Astron. Soc. Jpn 55, 467–466 (2003).
Rezzolla, L., Yoshida, S., Maccarone, T. J. & Zanotti, O. A new simple model for high-frequency quasi-periodic oscillations in black hole candidates. Mon. Not. R. Astron. Soc. 344, L37–L41 (2003).
Alston, W. N. et al. Discovery of an ~2-h high-frequency X-ray QPO and iron Kα reverberation in the active galaxy MS 2254.9−3712. Mon. Not. R. Astron. Soc. 449, 467–476 (2015).
Raj, A. & Nixon, C. J. Disk tearing: implications for black hole accretion and AGN variability. Astrophys. J. 909, 82 (2021).
Pan, X., Li, S.-L., Cao, X., Miniutti, G. & Gu, M. A disk instability model for the quasi-periodic eruptions of GSN 069. Astrophys. J. Lett. 928, L18 (2022).
Kaur, K., Stone, N. C. & Gilbaum, S. Magnetically dominated discs in tidal disruption events and quasi-periodic eruptions. Mon. Not. R. Astron. Soc. 524, 1269–1290 (2023).
Pan, X., Li, S.-L. & Cao, X. Application of the disk instability model to all quasiperiodic eruptions. Astrophys. J. 952, 32 (2023).
Śniegowska, M., Grzȩdzielski, M., Czerny, B. & Janiuk, A. Modified models of radiation pressure instability applied to 10, 105, and 107 M⊙ accreting black holes. Astron. Astrophys. 672, A19 (2023).
Dai, L. & Blandford, R. Roche accretion of stars close to massive black holes. Mon. Not. R. Astron. Soc. 434, 2948–2960 (2013).
Suková, P., Zajaček, M., Witzany, V. & Karas, V. Stellar transits across a magnetized accretion torus as a mechanism for plasmoid ejection. Astrophys. J. 917, 43 (2021).
Xian, J., Zhang, F., Dou, L., He, J. & Shu, X. X-ray quasi-periodic eruptions driven by star-disk collisions: application to GSN069 and probing the spin of massive black holes. Astrophys. J. Lett. 921, L32 (2021).
Tagawa, H. & Haiman, Z. Flares from stars crossing active galactic nucleus discs on low-inclination orbits. Mon. Not. R. Astron. Soc. 526, 69–79 (2023).
King, A. GSN 069—a tidal disruption near miss. Mon. Not. R. Astron. Soc. 493, L120–L123 (2020).
Krolik, J. H. & Linial, I. Quasiperiodic erupters: a stellar mass-transfer model for the radiation. Astrophys. J. 941, 24 (2022).
Metzger, B. D., Stone, N. C. & Gilbaum, S. Interacting stellar EMRIs as sources of quasi-periodic eruptions in galactic nuclei. Astrophys. J. 926, 101 (2022).
Zhao, Z. Y., Wang, Y. Y., Zou, Y. C., Wang, F. Y. & Dai, Z. G. Quasi-periodic eruptions from the helium envelope of hydrogen-deficient stars stripped by supermassive black holes. Astron. Astrophys. 661, A55 (2022).
King, A. QPE or QPO?—Quasiperiodic activity in low-mass galaxy nuclei. Mon. Not. R. Astron. Soc. 523, L26–L29 (2023).
Arcodia, R. et al. The complex time and energy evolution of quasi-periodic eruptions in eRO-QPE1. Astron. Astrophys. 662, A49 (2022).
Miniutti, G. et al. Repeating tidal disruptions in GSN 069: long-term evolution and constraints on quasi-periodic eruptions’ models. Astron. Astrophys. 670, A93 (2023).
Chakraborty, J. et al. Testing EMRI models for quasi-periodic eruptions with 3.5 yr of monitoring eRO-QPE1. Astrophys. J. 965, 12 (2024).
Miniutti, G. et al. Alive and kicking: a new QPE phase in GSN 069 revealing a quiescent luminosity threshold for QPEs. Astron. Astrophys. 674, L1 (2023).
Song, J. R. et al. Possible ~0.4 h X-ray quasi-periodicity from an ultrasoft active galactic nucleus. Astron. Astrophys. 644, L9 (2020).
Arcodia, R. et al. Cosmic hide and seek: the volumetric rate of X-ray quasi-periodic eruptions. Astron. Astrophys. 684, L14 (2024).
Peters, P. C. Gravitational radiation and the motion of two point masses. Phys. Rev. 136, 1224–1232 (1964).
Pan, Z., Lyu, Z. & Yang, H. Wet extreme mass ratio inspirals may be more common for spaceborne gravitational wave detection. Phys. Rev. D 104, 063007 (2021).
Eggleton, P. P. Aproximations to the radii of Roche lobes. Astrophys. J. 268, 368–369 (1983).
Verbunt, F. & Rappaport, S. Mass transfer instabilities due to angular momentum flows in close binaries. Astrophys. J. 332, 193 (1988).
Ramsay, G. et al. Physical properties of AM CVn stars: new insights from Gaia DR2. Astron. Astrophys. 620, A141 (2018).
Strohmayer, T. E. A real-time view of orbital evolution in HM Cancri. Astrophys. J. Lett. 912, L8 (2021).
Linial, I. & Quataert, E. Period evolution of repeating transients in galactic nuclei. Mon. Not. R. Astron. Soc. 527, 4317–4329 (2024).
Peng, P. & Chen, X. The last migration trap of compact objects in AGN accretion disc. Mon. Not. R. Astron. Soc. 505, 1324–1333 (2021).
Payne, A. V. et al. ASASSN-14ko is a periodic nuclear transient in ESO 253−G003. Astrophys. J. 910, 125 (2021).
Wevers, T. et al. Live to die another day: the rebrightening of AT 2018fyk as a repeating partial tidal disruption event. Astrophys. J. Lett. 942, L33 (2023).
Somalwar, J. J. et al. The first systematically identified repeating partial tidal disruption event. Preprint at https://arxiv.org/abs/2310.03782 (2023).
Gafton, E., Tejeda, E., Guillochon, J., Korobkin, O. & Rosswog, S. Relativistic effects on tidal disruption kicks of solitary stars. Mon. Not. R. Astron. Soc. 449, 771–780 (2015).
Cufari, M., Nixon, C. J. & Coughlin, E. R. Tidal capture of stars by supermassive black holes: implications for periodic nuclear transients and quasi-periodic eruptions. Mon. Not. R. Astron. Soc. 520, L38–L41 (2023).
Cufari, M., Coughlin, E. R. & Nixon, C. J. Using the Hills mechanism to generate repeating partial tidal disruption events and ASASSN-14ko. Astrophys. J. Lett. 929, L20 (2022).
Ryu, T. et al. In-plane tidal disruption of stars in discs of active galactic nuclei. Mon. Not. R. Astron. Soc. 527, 8103–8117 (2024).
Wang, Y., Lin, D. N. C., Zhang, B. & Zhu, Z. Changing-look active galactic nuclei behavior induced by disk-captured tidal disruption events. Astrophys. J. Lett. 962, L7 (2024).
Amaro-Seoane, P. et al. Laser Interferometer Space Antenna. Preprint at https://arxiv.org/abs/1702.00786 (2017).
Burdge, K. B. et al. A systematic search of Zwicky Transient Facility data for ultracompact binary LISA-detectable gravitational-wave sources. Astrophys. J. 905, 32 (2020).
Stella, L. & Vietri, M. Lense–Thirring precession and quasi-periodic oscillations in low-mass X-ray binaries. Astrophys. J. Lett. 492, L59–L62 (1998).
Motta, S. E., Belloni, T. M., Stella, L., Muñoz-Darias, T. & Fender, R. Precise mass and spin measurements for a stellar-mass black hole through X-ray timing: the case of GRO J1655−40. Mon. Not. R. Astron. Soc. 437, 2554–2565 (2014).
Motta, S. E., Franchini, A., Lodato, G. & Mastroserio, G. On the different flavours of Lense–Thirring precession around accreting stellar mass black holes. Mon. Not. R. Astron. Soc. 473, 431–439 (2018).
Franchini, A., Lodato, G. & Facchini, S. Lense–Thirring precession around supermassive black holes during tidal disruption events. Mon. Not. R. Astron. Soc. 455, 1946–1956 (2016).
Ogilvie, G. I. The non-linear fluid dynamics of a warped accretion disc. Mon. Not. R. Astron. Soc. 304, 557–578 (1999).
Doǧan, S., Nixon, C. J., King, A. R. & Pringle, J. E. Instability of warped discs. Mon. Not. R. Astron. Soc. 476, 1519–1531 (2018).
Nixon, C. J. & King, A. R. Broken discs: warp propagation in accretion discs. Mon. Not. R. Astron. Soc. 421, 1201–1208 (2012).
Nealon, R., Price, D. J. & Nixon, C. J. On the Bardeen–Petterson effect in black hole accretion discs. Mon. Not. R. Astron. Soc. 448, 1526–1540 (2015).
Liska, M., Tchekhovskoy, A., Ingram, A. & van der Klis, M. Bardeen–Petterson alignment, jets, and magnetic truncation in GRMHD simulations of tilted thin accretion discs. Mon. Not. R. Astron. Soc. 487, 550–561 (2019).
Bollimpalli, D. A., Fragile, P. C., Dewberry, J. W. & Kluźniak, W. Truncated, tilted discs as a possible source of quasi-periodic oscillations. Mon. Not. R. Astron. Soc. 528, 1142–1157 (2024).
Kara, E. et al. A global look at X-ray time lags in Seyfert galaxies. Mon. Not. R. Astron. Soc. 462, 511–531 (2016).
Kara, E. et al. The corona contracts in a black-hole transient. Nature 565, 198–201 (2019).
Axelsson, M. & Veledina, A. Accretion geometry of the black hole binary MAXI J1820+070 probed by frequency-resolved spectroscopy. Mon. Not. R. Astron. Soc. 507, 2744–2754 (2021).
De Marco, B. et al. The inner flow geometry in MAXI J1820+070 during hard and hard-intermediate states. Astron. Astrophys. 654, A14 (2021).
Wang, J. et al. Disk, corona, jet connection in the intermediate state of MAXI J1820+070 revealed by NICER spectral-timing analysis. Astrophys. J. Lett. 910, L3 (2021).
Markoff, S., Falcke, H. & Fender, R. A jet model for the broadband spectrum of XTE J1118+480. Synchrotron emission from radio to X-rays in the low/hard spectral state. Astron. Astrophys. 372, L25–L28 (2001).
Falcke, H., Körding, E. & Markoff, S. A scheme to unify low-power accreting black holes. Jet-dominated accretion flows and the radio/X-ray correlation. Astron. Astrophys. 414, 895–903 (2004).
Markoff, S., Nowak, M. A. & Wilms, J. Going with the flow: can the base of jets subsume the role of compact accretion disk coronae? Astrophys. J. 635, 1203–1216 (2005).
Acknowledgements
We thank XMM-Newton principal investigator, N. Schartel, for approving the target-of-opportunity requests. M.M. thanks M. Ng for discussions regarding X-ray timing; L. Drummond for discussions about extreme-mass-ratio models; and the organizers and participants of the UCSB KITP TDE Workshop, including, but not limited to, J. Dai, G. Lodato, C. Nixon, A. Mummery, A. Franchini, I. Linial and D. Pasham for their comments, questions and discussions regarding these results. E.K. thanks A. Dittmann and D. Wilkins for discussions. R.A. was supported by NASA through the NASA Hubble Fellowship grant HST-HF2-51499.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. A.I. acknowledges support from the Royal Society. M.G. is supported by the ‘Programa de Atracción de Talento’ of the Comunidad de Madrid, grant number 2022-5A/TIC-24235. C. Pinto is supported by PRIN MUR SEAWIND funded by NextGenerationEU. B.T. acknowledges support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 950533) and from the Israel Science Foundation (grant number 1849/19). J.W. acknowledges support from the NASA FINESST Graduate Fellowship, under grant 80NSSC22K1596. This research was supported in part by grant NSF PHY-2309135 to the Kavli Institute for Theoretical Physics (KITP).
Author information
Authors and Affiliations
Contributions
M.M. and E.K. led the analysis, interpretation and preparation of the paper, and requested a subset of the XMM-Newton and NICER data. C. Panagiotou and W.N.A. assisted with X-ray timing analysis. J.C. and K.B. contributed to the white-dwarf accretion modelling and computed the expected LISA signal. J.C., R.A., M.G. and G.M. provided information about QPEs, their models and connections to 1ES 1927+654. S.L., S.B.C., E.T.M., D.R.S. and O.I.S. triggered two of the XMM-Newton target-of-opportunity observations in this work. A.C.F. suggested the idea of coronal oscillations. A.I. and J.W. provided feedback on the timing analysis and relativistic precession model. R.A.R. assisted with the comparison with BHXB QPOs and NICER observations. C.R., P.K., C. Pinto and B.T. provided feedback on the analysis. C.R., I.A., A.C.F., J.A.G., P.K., M.L., C. Pinto, R.A.R. and B.T. assisted with the associated XMM-Newton proposal. All authors contributed to the scientific interpretation of the results and provided feedback on the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature thanks Gregoire Marcel, Richard Saxton and Yuhan Yao for their contribution to the peer review of this work. Peer reviewer reports are available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables
Extended Data Fig. 1 Unbinned PSDs from the 2–10 keV light curves with 20s binning for ObsIDs 0915390701, 0931791401, 0932392001, and 0932392101.
The resulting MCMC fit to a power-law or Lorentzian broadband noise model is shown in orange or purple, respectively. The shaded regions show a 1σ confidence region. The bottom two panels show the data divided by the power-law and Lorentzian models, highlighting the strong QPO feature at roughly 1.7 mHz (ObsIDs 0915390701), 2.2 mHz (ObsID 0931791401), and 2.3 mHz (ObsIDs 0932392001, 0932392101). These broadband noise models were used to simulate power spectra for estimating the statistical significance of the QPOs.
Extended Data Fig. 2 2–10 keV PSDs for the 4 observations taken in July-August 2022.
Left Four Panels: Unbinned PSDs from the 2–10 keV light curves with 20s binning for the 4 observations taken in July-August 2022 (ObsIDs 0902590201, 0902590301, 0902590401, 0902590501). The resulting MCMC fit to a power-law or Lorentzian broadband noise model is shown in orange or purple, respectively, with the 1σ confidence intervals shown as shaded regions. This model is fit simultaneously to all of these observations with all parameters tied. The bottom two panels show the data divided by the power-law and Lorentzian models. All four observations show an excess near 0.9 mHz. Rightmost Panel: Binned PSD created by averaging the individual PSDs at each frequency and then binning n = 6 neighbouring frequency bins. The resulting simultaneous fits to the broad band noise are shown again, solely for visual purposes. There is a clear, but broad, excess around 0.9 mHz.
Extended Data Fig. 3 Binned PSDs (n = 6 frequencies per bin, standard error uncertainties) for each of the observations showing evidence for a QPO.
The yellow, orange, and purple data shows the 0.3–2 keV, 1–4 keV, and 2–10 keV PSDs, respectively. Each column corresponds to a single epoch in time. Note that the July-August 2022 (March 2024) data contains 4 (2) observations taken within roughly 1 week of each other. The lower energy PSDs all show a weaker QPO than the higher energy (2–10 keV) PSDs, and thus, we use the 2–10 keV PSDs for analysis of the QPO.
Extended Data Fig. 4 Fractional RMS of the QPO in February 2023, August 2023, and March 2024 (first observation only) in two different energy bands – 0.3–2 keV and 2–10 keV.
The fractional RMS was estimated using the normalization of the best-fitting Lorentzian for the QPO, and the error bars represent 1σ confidence intervals from the MCMCs. As in BHXBs, the fraction RMS increases with energy, suggesting that the Comptonized component is what is being modulated on the QPO frequency.
Extended Data Fig. 5 Location of the QPO in terms of the ISCO, assuming that the QPO corresponds to the orbital frequency.
The solid lines show the best mass estimate (1.38 × 106 M⊙; ref. 8), which gives rise to the grey dotted line as a lower limit on the spin of the SMBH. However, the spin constraint is highly sensitive to the mass, which has significant uncertainty. The shaded regions show the effects of this (1σ) uncertainty8.
Extended Data Fig. 6 Frequency dependence of the QPO on the spectral shape and X-ray flux, all of which show positive correlations.
Error bars represent 1σ uncertainty. a, Photon index of the power-law component versus QPO frequency. The photon index was measured by fitting the 0.3–10 keV spectrum with the XSPEC model tbabs × ztbabs × (zpower + zbbody). b, Hard X-ray flux (2–10 keV) versus QPO frequency. c, Soft X-ray flux (0.3–2 keV) versus QPO frequency.
Extended Data Fig. 7 Mass versus spin contours assuming that the most rapid QPO (f = 2.34 mHz, March 2024) is the associated with the radial epicyclic frequency at various radii from the black hole.
The best mass estimate, from host galaxy scaling relations, is shown in grey, with the shaded regions showing the 1σ uncertainty region. The QPO can only be associated with the radial epicyclic frequency if the SMBH mass is on the low end of the uncertainty range, the SMBH is rapidly spinning, and the tearing radius is small. Even if the SMBH mass is an order of magnitude lower than the estimate from host galaxy scaling relations, the QPO would still need to be produced within 10 Rg if it is related to the radial epicyclic frequency.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Masterson, M., Kara, E., Panagiotou, C. et al. Millihertz oscillations near the innermost orbit of a supermassive black hole. Nature 638, 370–375 (2025). https://doi.org/10.1038/s41586-024-08385-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-024-08385-x