Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Superfluid stiffness of twisted trilayer graphene superconductors

This article has been updated

Abstract

The robustness of the macroscopic quantum nature of a superconductor can be characterized by the superfluid stiffness, ρs, a quantity that describes the energy required to vary the phase of the macroscopic quantum wavefunction. In unconventional superconductors, such as cuprates, the low-temperature behaviour of ρs markedly differs from that of conventional superconductors owing to quasiparticle excitations from gapless points (nodes) in momentum space. Intensive research on the recently discovered magic-angle twisted graphene family has revealed, in addition to superconducting states, strongly correlated electronic states associated with spontaneously broken symmetries, inviting the study of ρs to uncover the potentially unconventional nature of its superconductivity. Here we report the measurement of ρs in magic-angle twisted trilayer graphene (TTG), revealing unconventional nodal-gap superconductivity. Utilizing radio-frequency reflectometry techniques to measure the kinetic inductive response of superconducting TTG coupled to a microwave resonator, we find a linear temperature dependence of ρs at low temperatures and nonlinear Meissner effects in the current-bias dependence, both indicating nodal structures in the superconducting order parameter. Furthermore, the doping dependence shows a linear correlation between the zero-temperature ρs and the superconducting transition temperature Tc, reminiscent of Uemura’s relation in cuprates, suggesting phase-coherence-limited superconductivity. Our results provide strong evidence for nodal superconductivity in TTG and put strong constraints on the mechanisms of these graphene-based superconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental set-up and device characterization.
Fig. 2: Temperature- and doping-dependent superfluid stiffness.
Fig. 3: BKT transition, Uemura’s relation and nodal pairing symmetry.
Fig. 4: Nonlinear Meissner effect.

Similar content being viewed by others

Data availability

Source data are provided with the paper. All other data that support the findings of this study are available from the corresponding authors upon reasonable request.

Change history

  • 07 April 2025

    In the version of the article initially published, the grant no. NSF DMR-2220703 appeared incorrectly and has now been amended in the HTML and PDF versions of the article.

References

  1. Lee, P. A. & Wen, X.-G. Unusual superconducting state of underdoped cuprates. Phys. Rev. Lett. 78, 4111 (1997).

    Article  ADS  CAS  MATH  Google Scholar 

  2. Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995).

    Article  ADS  CAS  MATH  Google Scholar 

  3. Millis, A. J., Girvin, S. M., Ioffe, L. B. & Larkin, A. I. Anomalous charge dynamics in the superconducting state of underdoped cuprates. J. Phys. Chem. Solids 59, 1742–1744 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Yip, S. K. & Sauls, J. A. Nonlinear Meissner effect in CuO superconductors. Phys. Rev. Lett. 69, 2264 (1992).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  5. Xu, D., Yip, S. K. & Sauls, J. A. Nonlinear Meissner effect in unconventional superconductors. Phys. Rev. B 51, 16233 (1995).

    Article  ADS  CAS  MATH  Google Scholar 

  6. Hardy, W. N., Bonn, D. A., Morgan, D. C., Liang, R. & Zhang, K. Precision measurements of the temperature dependence of λ in YBCO: strong evidence for nodes in the gap function. Phys. Rev. Lett. 70, 3999 (1993).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  7. Uemura, Y. J. et al. Universal correlations between Tc and ns/m* (carrier density over effective mass) in high-Tc cuprate superconductors. Phys. Rev. Lett. 62, 2317 (1989).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  8. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  10. Hao, Z. et al. Electric field-tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science 371, 1133–1138 (2021).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  11. Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  12. Park, J. M. et al. Robust superconductivity in magic-angle multilayer graphene family. Nat. Mater. 21, 877–883 (2022).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  13. Zhang, Y. et al. Promotion of superconductivity in magic-angle graphene multilayers. Science 377, 1538–1543 (2022).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  14. Cao, Y. et al. Nematicity and competing orders in superconducting magic-angle graphene. Science 372, 264–271 (2021).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  15. Cao, Y., Park, J. M., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Pauli-limit violation and re-entrant superconductivity in moiré graphene. Nature 595, 526–531 (2021).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  16. Tian, H. et al. Evidence for Dirac flat band superconductivity enabled by quantum geometry. Nature 614, 440–444 (2023).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  17. Oh, M. et al. Evidence for unconventional superconductivity in twisted bilayer graphene. Nature 600, 240–245 (2021).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  18. Kim, H. et al. Evidence for unconventional superconductivity in twisted trilayer graphene. Nature 606, 494–500 (2022).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  19. Schoelkopf, R. J., Wahlgren, P., Kozhevnikov, A. A., Delsing, P. & Prober, D. E. The radio-frequency single-electron transistor (RF-SET): a fast and ultrasensitive electrometer. Science 280, 1238–1242 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Reilly, D. J., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Fast single-charge sensing with a RF quantum point contact. Appl. Phys. Lett. 91, 162101 (2007).

  21. Vigneau, F. et al. Probing quantum devices with radio-frequency reflectometry. Appl. Phys. Rev. 10, 021305 (2023).

  22. Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the Wiedemann–Franz law in graphene. Science 351, 1058–1061 (2016).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  23. Annunziata, A. J. et al. Tunable superconducting nanoinductors. Nanotechnology 21, 445202 (2010).

    Article  PubMed  Google Scholar 

  24. Singh, G. et al. Competition between electron pairing and phase coherence in superconducting interfaces. Nat. Commun. 9, 407 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  25. Weitzel, A. et al. Sharpness of the Berezinskii–Kosterlitz–Thouless transition in disordered NbN films. Phys. Rev. Lett. 131, 186002 (2023).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  26. Haller, R. et al. Phase-dependent microwave response of a graphene Josephson junction. Phys. Rev. Res. 4, 013198 (2022).

    Article  CAS  MATH  Google Scholar 

  27. Phan, D. et al. Detecting induced p ± ip pairing at the Al–InAs interface with a quantum microwave circuit. Phys. Rev. Lett. 128, 107701 (2022).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  28. Bøttcher, C. G. L. et al. Circuit quantum electrodynamics detection of induced two-fold anisotropic pairing in a hybrid superconductor-ferromagnet bilayer. Nat. Phys. 20, 1609–1615 (2024).

  29. Tanaka, M. et al. Superfluid stiffness of magic-angle twisted bilayer graphene. Nature https://doi.org/10.1038/s41586-024-08494-7 (2025).

  30. Kreidel, M. et al. Measuring kinetic inductance and superfluid stiffness of two-dimensional superconductors using high-quality transmission-line resonators. Preprint at https://arxiv.org/abs/2407.09916 (2024).

  31. Tinkham, M. Introduction to Superconductivity 2nd edn (Dover Publications, 2004).

  32. Khalaf, E., Kruchkov, A. J., Tarnopolsky, G. & Vishwanath, A. Magic angle hierarchy in twisted graphene multilayers. Phys. Rev. B 100, 085109 (2019).

    Article  ADS  CAS  MATH  Google Scholar 

  33. Probst, S., Song, F. B., Bushev, P. A., Ustinov, A. V. & Weides, M. Efficient and robust analysis of complex scattering data under noise in microwave resonators. Rev. Sci. Instrum. 86, 024706 (2015).

  34. Nelson, D. R. & Kosterlitz, J. M. Universal jump in the superfluid density of two-dimensional superfluids. Phys. Rev. Lett. 39, 1201 (1977).

    Article  ADS  CAS  MATH  Google Scholar 

  35. Turkel, S. et al. Orderly disorder in magic-angle twisted trilayer graphene. Science 376, 193–199 (2022).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  36. Uri, A. et al. Mapping the twist-angle disorder and Landau levels in magic-angle graphene. Nature 581, 47–52 (2020).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  37. Homes, C. C. et al. A universal scaling relation in high-temperature superconductors. Nature 430, 539–541 (2004).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  38. Dordevic, S. V., Basov, D. N. & Homes, C. C. Do organic and other exotic superconductors fail universal scaling relations? Sci. Rep. 3, 1713 (2013).

    Article  PubMed Central  Google Scholar 

  39. Božović, I., He, X., Wu, J. & Bollinger, A. T. Dependence of the critical temperature in overdoped copper oxides on superfluid density. Nature 536, 309–311 (2016).

    Article  ADS  PubMed  Google Scholar 

  40. Bidinosti, C. P., Hardy, W. N., Bonn, D. A. & Liang, R. Magnetic field dependence of λ in YBa2Cu3O6.95: results as a function of temperature and field orientation. Phys. Rev. Lett. 83, 3277–3280 (1999).

    Article  ADS  CAS  MATH  Google Scholar 

  41. Oates, D. E., Park, S.-H. & Koren, G. Observation of the nonlinear Meissner effect in YBCO thin films: evidence for a d-wave order parameter in the bulk of the cuprate superconductors. Phys. Rev. Lett. 93, 197001 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Wilcox, J. A. et al. Observation of the non-linear Meissner effect. Nat. Commun. 13, 1201 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  43. Dahm, T. & Scalapino, D. J. Theory of microwave intermodulation in a high-Tc superconducting microstrip resonator. Appl. Phys. Lett. 69, 4248–4250 (1996).

    Article  ADS  CAS  MATH  Google Scholar 

  44. Bae, S. et al. Dielectric resonator method for determining gap symmetry of superconductors through anisotropic nonlinear Meissner effect. Rev. Sci. Instrum. 90, 043901 (2019).

  45. de Visser, P. J. et al. Evidence of a nonequilibrium distribution of quasiparticles in the microwave response of a superconducting aluminum resonator. Phys. Rev. Lett. 112, 047004 (2014).

    Article  ADS  PubMed  MATH  Google Scholar 

  46. Turneaure, S. J., Lemberger, T. R. & Graybeal, J. M. Effect of thermal phase fluctuations on the superfluid density of two-dimensional superconducting films. Phys. Rev. Lett. 84, 987–990 (2000).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  47. Peotta, S. & Törmä, P. Superfluidity in topologically nontrivial flat bands. Nat. Commun. 6, 8944 (2015).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  48. Peotta, S., Huhtinen, K.-E. & Törmä, P. Quantum geometry in superfluidity and superconductivity. Preprint at https://arxiv.org/abs/2308.08248 (2023).

  49. Verma, N., Guerci, D. & Queiroz, R. Geometric stiffness in interlayer exciton condensates. Phys. Rev. Lett. 132, 236001 (2023).

  50. Mendez-Valderrama, J. F., Mao, D. & Chowdhury, D. Low-energy optical sum rule in moiré graphene. Phys. Rev. Lett. 133, 196501 (2023).

  51. Mao, D. & Chowdhury, D. Diamagnetic response and phase stiffness for interacting isolated narrow bands. Proc. Natl Acad. Sci. USA 120, e2217816120 (2023).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  52. Mao, D. & Chowdhury, D. Upper bounds on superconducting and excitonic phase stiffness for interacting isolated narrow bands. Phys. Rev. B 109, 024507 (2024).

    Article  ADS  CAS  Google Scholar 

  53. Ioffe, L. B. & Millis, A. J. d-wave superconductivity in doped Mott insulators. J. Phys. Chem. Solids 63, 2259–2268 (2002).

    Article  ADS  CAS  MATH  Google Scholar 

  54. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  ADS  CAS  MATH  Google Scholar 

  55. Benfatto, L., Castellani, C. & Giamarchi, T. Kosterlitz–Thouless behavior in layered superconductors: the role of the vortex core energy. Phys. Rev. Lett. 98, 117008 (2007).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  56. Hetel, I., Lemberger, T. R. & Randeria, M. Quantum critical behaviour in the superfluid density of strongly underdoped ultrathin copper oxide films. Nat. Phys. 3, 700–702 (2007).

    Article  CAS  Google Scholar 

  57. Hazra, T., Verma, N. & Randeria, M. Upper bounds on the superfluid stiffness and superconducting Tc: applications to twisted-bilayer graphene and ultra-cold Fermi gases. Phys. Rev. X 9, 031049 (2019).

    CAS  MATH  Google Scholar 

  58. Mahmood, F., He, X., Bozovic, I. & Armitage, N. P. Locating the missing superconducting electrons in the overdoped cuprates La2−xSrxCuO4. Phys. Rev. Lett. 122, 027003 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Hu, X., Hyart, T., Pikulin, D. I. & Rossi, E. Geometric and conventional contribution to the superfluid weight in twisted bilayer graphene. Phys. Rev. Lett. 123, 237002 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Törmä, P., Peotta, S. & Bernevig, B. A. Superconductivity, superfluidity and quantum geometry in twisted multilayer systems. Nat. Rev. Phys. 4, 528–542 (2022).

    Article  MATH  Google Scholar 

  61. Ganiev, O. K. & Yavidov, B. Superfluid density and critical current density in superconducting cuprates with an extended d-wave pairing symmetry. Eur. Phys. J. B 94, 116 (2021).

    Article  ADS  CAS  MATH  Google Scholar 

Download references

Acknowledgements

We thank S. Kivelson and E. Berg for discussions. The major experimental work is supported by ARO MURI (W911NF-21-2-0147). P.K. and A.B. acknowledge support from the DOE (DE-SC0012260). M.K. is supported by the STC Center for Integrated Quantum Materials, NSF Grant number DMR-1231319. A.V., P.L. and P.A.V. are supported by a Simons Investigator grant (A.V.) and by NSF DMR-2220703. P.A.V. acknowledges support by a Quantum-CT Quantum Regional Partnership Investments (QRPI) Award. K.C.F. thanks M. Randeria for her musings inspiring this research direction. A.Y. and M.E.W. are supported by the Quantum Science Center (QSC), a National Quantum Information Science Research Center of the US Department of Energy (DOE). A.Y. is also partly supported by the Gordon and Betty Moore Foundation through grant GBMF ID #12762. K.W. and T.T. acknowledge support from the JSPS KAKENHI (grant numbers 21H05233 and 23H02052) and World Premier International Research Center Initiative (WPI), MEXT, Japan. Nanofabrication was performed at the Center for Nanoscale Systems at Harvard, supported in part by an NSF NNIN award ECS- 00335765.

Author information

Authors and Affiliations

Authors

Contributions

A.B., Z.H., M.K., K.C.F, and P.K. conceived of the experiment. Z.H., I.P., J.M.P. and A.Z. fabricated the devices, A.B., Z.H., M.E.W. and M.K. conducted the measurements and analysed the data. P.L., P.A.V. and A.V. conducted the theoretical analysis. R.M.W., A.Y., P.J.-H, P.A.V., A.V., K.C.F. and P.K. supervised the project. All authors discussed and wrote the paper. K.W. and T.T. supplied hBN crystals.

Corresponding authors

Correspondence to Kin Chung Fong or Philip Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Fan Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Device DC transport characterization.

a, TTG 4-terminal R as a function of ν and magnetic field B at zero displacement field and a temperature of 2 K. The Landau fans show two set of structures: one set with large slopes and the other that appear at low B with shallow slopes. b, TTG 4-terminal R as a function of ν and displacement field D at zero B and a temperature of 30 mK.

Extended Data Fig. 2 Measurement setup.

Circuit model of measurement setup for superfluid stiffness measurements. The moiré graphene sample is indicated by dashed pink lines while the circuit board–containing sample, LC matching network, and bias tees to allow impedance matching for microwave measurement–is indicated by dashed purple lines. DC and RF filtering is used to reduce noise throughout the measurement chain. The RF signal is sent through an attenuated input line before entering a directional coupler. Sample contact resistance of 3.2 kΩ is given by Rc. Graphite top and bottom gates are represented by “gate”. The final signal is amplified both at 4 K and room temperature before being measured by a vector network analyzer (VNA).

Extended Data Fig. 3 Circle fitting.

(a) Circle fitting of S21 in the complex plane. (b) Fitting of the reflection amplitude S21(f). (c) Fitting of the phase expressed in degrees \(\arg {S}_{21}(f)\).

Extended Data Fig. 4 Uemura’s law.

Scaling of ρs0 versus Tc (obtained from resistance measurements) for both electron and hole side superconductors in all measured devices. A roughly linear trend is generally observed, even for devices with twist-angle disorder.

Extended Data Fig. 5 Superfluid stiffness in NbN thin films.

(a) Optical micrograph of a NbN thin film device with a meandering Au strip. The Au strip provides an additional resistance of 2.9 kΩ to mimic the contact resistance of TTG devices. We measured NbN samples thickness of 5 nm (NbN-5nm) and 8 nm (NbN-8nm) (b) Normalized superfluid stiffness ρs(T)/ρs0 as a function of temperature T normalized with respect to the superconducting transition temperature Tc for TTG and NbN devices. TTG shows monotonically rising stiffness as the temperature is lowered, with a linear behavior for T/Tc≤0.3. On the other hand, the NbN devices show a robust saturation of the stiffness for T/Tc≤0.3. The NbN stiffness data obeys the BCS expectation. The BCS fit is given by \({\rho }_{s}(T)/{\rho }_{s0}=\Delta (T)/{\Delta }_{0}\tanh (\Delta (T)/T)\) where \(\Delta (T)={\Delta }_{0}\tanh ({\rm{\pi }}{T}_{c}/{\Delta }_{0}\sqrt{{T}_{c}/T-1}),{\Delta }_{0}=1.76{k}_{B}{T}_{c}\).

Supplementary information

Supplementary Information

The Supplementary Information file contains Supplementary Notes 1–6 and Figs. 1–9.

Peer Review File

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A., Hao, Z., Kreidel, M. et al. Superfluid stiffness of twisted trilayer graphene superconductors. Nature 638, 93–98 (2025). https://doi.org/10.1038/s41586-024-08444-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-08444-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing