Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ambient-pressure superconductivity onset above 40 K in (La,Pr)3Ni2O7 films

Abstract

The discovery of Ruddlesden–Popper (RP) bilayer nickelate superconductors under high pressure has opened a new chapter in high-transition-temperature superconductivity1,2,3,4,5,6,7,8. However, the high-pressure conditions and presence of impurity phases have hindered comprehensive investigations into their superconducting properties and potential applications. Here we report ambient-pressure superconductivity onset above the McMillan limit (40 K) in RP bilayer nickelate epitaxial thin films. Three-unit-cell-thick La2.85Pr0.15Ni2O7 pure-phase single-crystal films are grown using the gigantic-oxidative atomic layer-by-layer epitaxy on SrLaAlO4 substrates9. Resistivity measurements and magnetic field responses indicate onset transition temperature of 45 K. The transition to zero resistance shows characteristics consistent with a Berezinskii–Kosterlitz–Thouless (BKT) behaviour, with TBKT = 9 K. The Meissner diamagnetic effect is observed at 8 K by using a mutual inductance setup, in agreement with the BKT-like transition. In- and out-of-plane critical magnetic fields show anisotropy. Scanning transmission electron microscopy images and X-ray reciprocal space mappings reveal that the RP bilayer nickelate films adopt a tetragonal phase under roughly 2% coherent epitaxial compressive strain in the NiO2 planes relative to the bulk. Our findings pave the way for comprehensive investigations of nickelate superconductors under ambient pressure conditions and for exploring superconductivity at higher transition temperatures through strain engineering in heterostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Superconducting bilayer nickelate thin film.
Fig. 2: Magnetic field responses of the bilayer nickelate thin film.
Fig. 3: STEM of superconducting bilayer nickelate thin films.
Fig. 4: XRD and RSM of bilayer nickelate thin films.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

References

  1. Sun, H. et al. Signatures of superconductivity near 80 K in a nickelate under high pressure. Nature 621, 493–498 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Hou, J. et al. Emergence of high-temperature superconducting phase in pressurized La3Ni2O7 crystals. Chin. Phys. Lett. 40, 117302 (2023).

    Article  ADS  CAS  Google Scholar 

  3. Zhang, Y. et al. High-temperature superconductivity with zero resistance and strange-metal behaviour in La3Ni2O7−δ. Nat. Phys. 20, 1269–1273 (2024).

    Article  CAS  Google Scholar 

  4. Wang, G. et al. Pressure-induced superconductivity in polycrystalline La3Ni2O7−δ. Phys. Rev. X. 14, 011040 (2024).

    CAS  Google Scholar 

  5. Wang, N. et al. Bulk high-temperature superconductivity in pressurized tetragonal La2PrNi2O7. Nature 634, 579–584 (2024).

    Article  CAS  PubMed  Google Scholar 

  6. Dong, Z. et al. Visualization of oxygen vacancies and self-doped ligand holes in La3Ni2O7−δ. Nature 630, 847–852 (2024).

    Article  CAS  PubMed  Google Scholar 

  7. Yang, J. et al. Orbital-dependent electron correlation in double-layer nickelate La3Ni2O7. Nat. Commun. 15, 4373 (2024).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, Z. et al. Electronic correlations and partial gap in the bilayer nickelate La3Ni2O7. Nat. Commun. 15, 7570 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou, G. et al. Gigantic-oxidative atomic-layer-by-layer epitaxy for artificially designed complex oxides. Natl Sci. Rev. https://doi.org/10.1093/nsr/nwae429 (2024).

  10. Bednorz, J. G. & Müller, K. A. Possible high Tc Superconductivity in the Ba–La–Cu–O System. Z. Phys. B Con. Mat. 64, 189–193 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Lee, P. A. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  ADS  CAS  Google Scholar 

  13. Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Colloquium: theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457–482 (2015).

    Article  ADS  CAS  Google Scholar 

  14. Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Zeng, S. et al. Phase diagram and superconducting dome of infinite-layer Nd1−xSrxNiO2 thin films. Phys. Rev. Lett. 125, 147003 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Li, D. et al. Superconducting dome in Nd1−xSrxNiO2 infinite layer films. Phys. Rev. Lett. 125, 027001 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Gu, Q. et al. Single particle tunneling spectrum of superconducting Nd1-xSrxNiO2 thin films. Nat. Commun. 11, 6027 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, N. N. et al. Pressure-induced monotonic enhancement of Tc to over 30 K in superconducting Pr0.82Sr0.18NiO2 thin films. Nat. Commun. 13, 4367 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ding, X. et al. Critical role of hydrogen for superconductivity in nickelates. Nature 615, 50–55 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Lee, K. et al. Linear-in-temperature resistivity for optimally superconducting (Nd,Sr)NiO2. Nature 619, 288–292 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Gao, Q. et al. Magnetic excitations in strained infinite-layer nickelate PrNiO2 films. Nat. Commun. 15, 5576 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, Z. et al. Electronic structure of superconducting nickelates probed by resonant photoemission spectroscopy. Matter 5, 1806–1815 (2022).

    Article  CAS  Google Scholar 

  23. Cheng, B. et al. Evidence for d-wave superconductivity of infinite-layer nickelates from low-energy electrodynamics. Nat. Mater. 23, 775–781 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Ding, X. et al. Cuprate-like electronic structures in infinite-layer nickelates with substantial hole dopings. Natl Sci. Rev. 11, nwae194 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Luo, Z., Hu, X., Wang, M., Wú, W. & Yao, D.-X. Bilayer two-orbital model of La3Ni2O7 under pressure. Phys. Rev. Lett. 131, 126001 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Liu, Y.-B., Mei, J.-W., Ye, F., Chen, W.-Q. & Yang, F. s±-Wave pairing and the destructive role of apical-oxygen deficiencies in La3Ni2O7 under pressure. Phys. Rev. Lett. 131, 236002 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Oh, H. & Zhang, Y. H. Type-II tJ model and shared superexchange coupling from Hund’s rule in superconducting La3Ni2O7. Phys. Rev. B 108, 174511 (2023).

    Article  ADS  CAS  Google Scholar 

  28. Lu, C., Pan, Z., Yang, F. & Wu, C. Interlayer-coupling-driven high-temperature superconductivity in La3Ni2O7 under pressure. Phys. Rev. Lett. 132, 146002 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Yang, Q.-G., Wang, D. & Wang, Q.-H. Possible s±-wave superconductivity in La3Ni2O7. Phys. Rev. B 108, L140505 (2023).

    Article  ADS  CAS  Google Scholar 

  30. Wang, M., Wen, H.-H., Wu, T., Yao, D.-X. & Xiang, T. Normal and superconducting properties of La3Ni2O7. Chin. Phys. Lett. 41, 077402 (2024).

    Article  CAS  Google Scholar 

  31. Zhu, Y. et al. Superconductivity in pressurized trilayer La4Ni3O10-δ single crystals. Nature 631, 531–536 (2024).

    Article  CAS  PubMed  Google Scholar 

  32. Puphal, P. et al. Unconventional crystal structure of the high-pressure superconductor La3Ni2O7. Phys. Rev. Lett. 133, 146002 (2024).

    Article  CAS  PubMed  Google Scholar 

  33. Abadi, S. N. et al. Electronic structure of the alternating monolayer-trilayer phase of La3Ni2O7. Preprint at https://doi.org/10.48550/arXiv.2402.07143 (2024).

  34. Chen, X. et al. Polymorphism in the Ruddlesden–Popper nickelate La3Ni2O7: discovery of a hidden phase with distinctive layer stacking. J. Am. Chem. Soc. 146, 3640–3645 (2024).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, H. et al. Long-range structural order in a hidden phase of Ruddlesden-Popper bilayer nickelate La3Ni2O7. Inorg. Chem. 63, 5020–5026 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu, Y. et al. High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ. Nature 575, 156–163 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Eley, S. et al. Approaching zero-temperature metallic states in mesoscopic superconductor–normal–superconductor arrays. Nat. Phys. 8, 59–62 (2012).

    Article  CAS  Google Scholar 

  38. Chen, Z. et al. Carrier density and disorder tuned superconductor-metal transition in a two-dimensional electron system. Nat. Commun. 9, 4008 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  39. Saito, Y., Nojima, T. & Iwasa, Y. Highly crystalline 2D superconductors. Nat. Rev. Mater. 2, 16094 (2017).

    Article  ADS  CAS  Google Scholar 

  40. Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Li, D. et al. Quasi-two-dimensional nature of high-TC superconductivity in iron-based (Li,Fe)OHFeSe. Chin. Phys. Lett. 39, 127402 (2022).

    Article  ADS  CAS  Google Scholar 

  42. Hwang, H. Y. et al. Scaling of the temperature dependent Hall effect in La2−xSrxCuO4. Phys. Rev. Lett. 72, 2636–2639 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Zhao, S. Y. F. et al. Sign reversing Hall effect in atomically thin high temperature Bi2.1Sr1.9CaCu2.0O8+δ superconductors. Phys. Rev. Lett. 122, 247001 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Božović, I. et al. Dependence of the critical temperature in overdoped copper oxides on superfluid density. Nature 536, 309–311 (2016).

    Article  ADS  PubMed  Google Scholar 

  45. Jiang, X. et al. Interplay between superconductivity and the strange-metal state in FeSe. Nat. Phys. 19, 365–371 (2023).

    Article  CAS  Google Scholar 

  46. Wang, B. Y. et al. Isotropic Pauli-limited superconductivity in the infinite-layer nickelate Nd0.775Sr0.225NiO2. Nat. Phys. 17, 473–477 (2021).

    Article  CAS  Google Scholar 

  47. Ji, H. et al. Rotational symmetry breaking in superconducting nickelate Nd0.8Sr0.2NiO2 films. Nat. Commun. 14, 7155 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chow, L. E. et al. Dimensionality control and rotational symmetry breaking superconductivity in square-planar layered nickelates. Preprint at https://doi.org/10.48550/arXiv.2301.07606 (2023).

  49. Sun, W. et al. Evidence for anisotropic superconductivity beyond Pauli limit in infinite-layer lanthanum nickelates. Adv. Mater. 35, 2303400 (2023).

    Article  CAS  Google Scholar 

  50. Welp, U. et al. Angular dependence of the upper critical field of YBa2Cu3O7−δ single crystals. Phys. Rev. B 40, 5263(R) (1989).

    Article  ADS  Google Scholar 

  51. Ko, E.-K. et al. Signatures of ambient pressure superconductivity in thin film La3Ni2O7. Nature https://doi.org/10.1038/s41586-024-08525-3 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the discussions with G.-M. Zhang, D.-X. Yao and H. Yuan. This work was supported by the National Key R&D Program of China (grant no. 2022YFA1403101), the Natural Science Foundation of China (grants 92265112, 12374455 and 52388201), the Guangdong Provincial Quantum Science Strategic Initiative (grants GDZX2401004 and GDZX2201001), the Shenzhen Municipal Funding Co-Construction Program Project (grants SZZX2401001 and SZZX2301004) and the Shenzhen Science and Technology Program (grant KQTD20240729102026004). H.W. acknowledges support by the China Postdoctoral Science Foundation (grants GZB20240294 and 2024M751287). W.-Q.C. acknowledges the support by Center for Computational Science and Engineering at Southern University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

Q.-K.X. and Z.C. supervised the project. Z.C. initiated the study and coordinated the research efforts. G.Z., W.L. and Z.N. performed thin-film growth with assistance from Y.C. H.W. performed low-temperature measurements and analysis. Y.L. and H.H. contributed on STEM analysis. H.H. contributed on XRD analysis. W.-Q.C. provided theoretical support. Y.-J.S. provided support in data interpretation. Z.C. wrote the manuscript with key input from Q.-K.X. and all other authors. G.Z., W.L., H.W. and Z.N. contributed equally to this work.

Corresponding authors

Correspondence to Qi-Kun Xue or Zhuoyu Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Zhen Chen, Liang Qiao and Huiqiu Yuan for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Growth.

a, Schematic of synthesizing (La,Pr)3Ni2O7 on SrLaAlO4 with gigantic-oxidative atomically layer-by-layer epitaxy (GOALL-Epitaxy). b and c, RHEED oscillations and patterns of La3Ni2O7 and La2.85Pr0.15Ni2O7 growth on SrLaAlO4. Blue and orange blocks represent the growth of LaOx/(La0.95Pr0.05)Ox and NiOx layer, respectively. d-g, Time evolution of RHEED pattern during the growth of La2.85Pr0.15Ni2O7 film on SrLaAlO4 substrate. RHEED pattern of the substrate SrLaAlO4 (d), 1 unit cell of La2.85Pr0.15Ni2O7 (e), 2 unit cells (f) and 3 unit cells (g), respectively along [100] direction. Red solid line in (d) represents the intensity profile, which is obtained by integrating the intensity vertically in the rectangular area marked with red dashed line. h, Evolution of the distance between 00 and 01 diffraction spots, which is determined by the peak position of the intensity profile and the error bar is calculated by the FWHM of the peak.

Extended Data Fig. 2 Post-annealing.

a, Resistivity-versus-temperature curves of a 3UC La2.85Pr0.15Ni2O7/SrLaAlO4 sample before and after pure ozone flow annealing. This is a different sample from the one shown in Figs. 1 and 2 in the main text. b, X-ray diffraction (XRD) of the same sample shown in (a) before and after pure ozone flow annealing. c, Resistivity-temperature curves for La2.85Pr0.15Ni2O7 films on SrLaAlO4 substrates with different annealing conditions as follows. Sample 1 (3UC): 400 °C for 30 mins, with an O3 pressure of 1.57 × 10−1 mbar. Sample 2 (3UC): 500 °C for 30 mins, with an O3 pressure of 1.52 × 10−1 mbar. Sample 3 (3UC): 700 °C for 30 mins, with an O3 pressure of 1.10 × 10−1 mbar. Sample 4 (3UC): 600 °C for 30 mins, with an O3 pressure of 1.00 × 10−1 mbar. Sample 5 (3UC): 600 °C for 30 mins, with an O3 pressure of 1.38 × 10−1 mbar. Sample 6 (3UC): 600 °C for 30 mins, with an O3 pressure of 1.38 × 10−1 mbar. Sample 7 (3UC): 600 °C for 30 mins, with an O3 pressure of 1.30 × 10−1 mbar. Sample 8 (6UC): 700 °C for 30 mins, with an O3 pressure of 1.67 × 10−1 mbar. Sample 9 (6UC): 700 °C for 30 mins, with an O3 pressure of 2.03 × 10−1 mbar. The growth conditions for all films were identical as described in the methods section.

Extended Data Fig. 3 Oxygen loss.

a, Resistance changes as functions of time, with sample maintained at vacuum and different temperature inside the quantum design physical property measurement system (PPMS). b, An Arrhenius fit yields an activation energy of 0.34 eV for the oxygen loss process. c, XRD of the same sample shown in Figs. 1 and 2 in the main text after post-annealing and after 6 h in ultrahigh vacuum and 6 days in 1 atm O2 and at ambient temperature. Resistance increase rate in 1 atm O2 at ambient temperature is approximately 2 Ω per hour.

Extended Data Fig. 4 Current-voltage (I-V) characteristics.

I-V curves from 4 K to 15 K, with 1 K interval. Dashed red lines are linear fits to the log-log I-V curves. Inset: the power law exponent α obtained from the fit as a function of temperature. It is important to note that, due to the significant heating effect caused by the applied current (a result of the high critical current associated with the elevated TC), the actual sample temperatures are higher than the recorded values.

Extended Data Fig. 5 Sample without Pr.

Resistivity-temperature curve and magnetic field responses (inset) for a 3UC La3Ni2O7 film on SrLaAlO4.

Extended Data Fig. 6 Hall effect raw data.

a, 3UC La2.85Pr0.15Ni2O7 film on SrLaAlO4. b, 3UC La3Ni2O7 film on SrLaAlO4.

Extended Data Fig. 7 Penetration depth.

Extracted penetration depth λ  as a function of temperature from mutual inductance measurements assuming superconducting thickness of 4 ± 3 nm. The flux-leak is lower than 2% in our measurement setup as calibrated by a 5 mm × 5 mm × 0.5 mm Nb plate under 2 K.

Extended Data Fig. 8 Sr interfacial diffusion.

STEM HAADF and atomically-resolved EDS of an 3UC La2.85Pr0.15Ni2O7/SrLaAlO4 superconducting sample (a) and a 3UC La3Ni2O7/SrLaAlO4 sample (b). Data in a are the same set of data as shown in Fig. 3d in the main text. c, Sr EDS intensity for both samples as a function of distance across the interface.

Extended Data Fig. 9 Absorption spectroscopy.

Electron energy loss spectroscopy (EELS) of Ni L (a) and O K (b) edges, comparing film and substrate, in an annealed 3UC La2.85Pr0.15Ni2O7/SrLaAlO4 superconducting sample. c, Synchrotron X-ray absorption spectroscopy (XAS) spectra of Ni-L2 edge comparing a superconducting La2.85Pr0.15Ni2O7/SrLaAlO4 sample (same sample shown in Fig. 1) and a superconducting Nd0.8Sr0.2NiO2/(LaAlO3)0.3(Sr2TaAlO6)0.7 sample.

Extended Data Fig. 10 Surface and thickness.

a,b, Atomic force microscope (AFM) image of the SrLaAlO4 substrate annealed at 1030 °C and 1080 °C, respectively. The root-mean-square roughness is 536.6 pm and 439.6 pm, respectively. c, AFM image of a 3UC La3Ni2O7 film on SrLaAlO4 substrate. The root-mean-square roughness is 308.6 pm. d, AFM image of a 3UC La2.85Pr0.15Ni2O7 film on SrLaAlO4 substrate. The root-mean-square roughness is 407.3 pm. e, X-ray reflectivity (XRR) of 5UC La3Ni2O7/LaAlO3 (top), 3UC La3Ni2O7/SrLaAlO4 (middle) and 3UC La2.85Pr0.15Ni2O7/SrLaAlO4 (bottom) films. f, The relationship between electron density and thickness obtained by fitting the XRR results. The film thickness and surface roughness obtained by fitting are also listed.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Lv, W., Wang, H. et al. Ambient-pressure superconductivity onset above 40 K in (La,Pr)3Ni2O7 films. Nature 640, 641–646 (2025). https://doi.org/10.1038/s41586-025-08755-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-025-08755-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing