Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A Nd@C82–polymer interface for efficient and stable perovskite solar cells

Abstract

An important challenge in the commercialization of perovskite solar cells (PSCs) is the simultaneous attainment of high power conversion efficiency (PCE) and high stability. Using polymer interfaces in PSCs can enhance durability by blocking water and oxygen and by suppressing ion interdiffusion, but their electronic shielding poses a challenge for efficient and stable PSCs1,2,3. Here we report a magnetic endohedral metallofullerene Nd@C82–polymer coupling layer, which features ultrafast electron extraction and in situ encapsulation, thereby promoting homogeneous electron extraction and suppressing ion interdiffusion. The Nd@C82–polymer coupling layer in PSCs exhibited a PCE of 26.78% (certified 26.29%) and 23.08% with an aperture area of 0.08 cm2 and 16 cm2 (modules), respectively. The unencapsulated devices retained about 82% of the initial PCE after 2,500 h of continuous 1-sun maximum power point operation at 65 °C.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Endohedral magnetic metallofullerene Nd@C82–PMMA coupling layer facilitates ultrafast electron extraction and lead immobility.
Fig. 2: Electronic and optical properties of perovskite films with Nd@C82–PMMA coupling layer incorporation.
Fig. 3: Nd@C82–PMMA coupling layer for balanced charge carrier transport.
Fig. 4: Photovoltaics and stability of Nd@C82-based PSCs and modules.

Similar content being viewed by others

Data availability

All data are available in the main text or supplementary materials. The data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Peng, J. et al. Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science 371, 390–395 (2021).

    Article  ADS  PubMed  CAS  Google Scholar 

  2. Peng, J. et al. Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent. Nature 601, 573–578 (2022).

    Article  ADS  PubMed  CAS  Google Scholar 

  3. Zhao, Y. et al. A polymer scaffold for self-healing perovskite solar cells. Nat. Commun. 7, 10228 (2016).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  4. Chen, H. et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384, 189–193 (2024).

    Article  ADS  PubMed  CAS  Google Scholar 

  5. Liu, C. et al. Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells. Science 382, 810–815 (2023).

    Article  ADS  PubMed  CAS  Google Scholar 

  6. Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021).

    Article  ADS  PubMed  CAS  Google Scholar 

  7. Liu, S. et al. Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632, 536–542 (2024).

    Article  PubMed  Google Scholar 

  8. Zhang, S. et al. Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380, 404–409 (2023).

    Article  ADS  PubMed  CAS  Google Scholar 

  9. Yu, S. et al. Homogenized NiOx nanoparticles for improved hole transport in inverted perovskite solar cells. Science 382, 1399–1404 (2023).

    Article  ADS  PubMed  CAS  Google Scholar 

  10. Shen, Z. et al. Efficient and stable perovskite solar cells with regulated depletion region. Nat. Photon. 18, 450–457 (2024).

    Article  ADS  CAS  Google Scholar 

  11. Tang, H. et al. Reinforcing self-assembly of hole transport molecules for stable inverted perovskite solar cells. Science 383, 1236–1240 (2024).

    Article  ADS  PubMed  CAS  Google Scholar 

  12. Park, S. M. et al. Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature 624, 289–294 (2023).

    Article  ADS  PubMed  CAS  Google Scholar 

  13. Chen, P. et al. Multifunctional ytterbium oxide buffer for perovskite solar cells. Nature 625, 516–522 (2024).

    Article  ADS  PubMed  CAS  Google Scholar 

  14. Han, T.-H. et al. Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat. Commun. 10, 520 (2019).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  15. Jiang, Y. et al. Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation. Nat. Energy 4, 585–593 (2019).

    Article  ADS  CAS  Google Scholar 

  16. Luo, J. et al. Polymer-acid-metal quasi-ohmic contact for stable perovskite solar cells beyond a 20,000-hour extrapolated lifetime. Nat. Commun. 15, 2002 (2024).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  17. Said, A. A. et al. Sublimed C60 for efficient and repeatable perovskite-based solar cells. Nat. Commun. 15, 708 (2024).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  18. Chen, J. et al. Efficient tin-based perovskite solar cells with trans-isomeric fulleropyrrolidine additives. Nat. Photon. 18, 464–470 (2024).

    Article  ADS  CAS  Google Scholar 

  19. Ren, X. et al. Mobile iodides capture for highly photolysis- and reverse-bias-stable perovskite solar cells. Nat. Mater. 23, 810–817 (2024).

    Article  ADS  PubMed  CAS  Google Scholar 

  20. Li, Z. et al. Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells. Science 382, 284–289 (2023).

    Article  ADS  PubMed  CAS  Google Scholar 

  21. Xu, J. et al. Anion optimization for bifunctional surface passivation in perovskite solar cells. Nat. Mater. 22, 1507–1514 (2023).

    Article  ADS  PubMed  CAS  Google Scholar 

  22. Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).

    Article  ADS  Google Scholar 

  23. Lin, N. et al. STM investigation of metal endohedral fullerene adsorbed on a Van der Waals surface. Phys. Lett. A 222, 190–194 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Akiyama, K. et al. Absorption spectra of metallofullerenes M@C82 of lanthanoids. J. Phys. Chem. A 104, 7224–7226 (2000).

    Article  CAS  Google Scholar 

  25. Zhang, Y. et al. Favorite orientation of the carbon cage and a unique two-dimensional-layered packing model in the cocrystals of Nd@C82(I,II) isomers with decapyrrylcorannulene. Inorg. Chem. 60, 1462–1471 (2021).

    Article  PubMed  CAS  Google Scholar 

  26. Wu, B.-S. et al. Radiation-processed perovskite solar cells with fullerene-enhanced performance and stability. Cell Reports Phys. Sci. 2, 100646 (2021).

    Article  CAS  Google Scholar 

  27. Naaman, R. et al. New perspective on electron transfer through molecules. J. Phys. Chem. Lett. 13, 11753–11759 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ding, J., Lin, N., Weng, L.-T., Cue, N. & Yang, S. Isolation and characterization of a new metallofullerene Nd@C82. Chem. Phys. Lett. 261, 92–97 (1996).

    Article  ADS  CAS  Google Scholar 

  29. Jang, Y. W. et al. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 6, 63–71 (2021).

    Article  ADS  CAS  Google Scholar 

  30. Kresse, G. et al. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  ADS  CAS  Google Scholar 

  31. Olthof, S. et al. Ultralow doping in organic semiconductors: evidence of trap filling. Phys. Rev. Lett. 109, 176601 (2012).

    Article  ADS  PubMed  Google Scholar 

  32. Gong, Y. et al. Boosting exciton mobility approaching Mott-Ioffe-Regel limit in Ruddlesden−Popper perovskites by anchoring the organic cation. Nat. Commun. 15, 1893 (2024).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zhang, H. et al. Lead immobilization for environmentally sustainable perovskite solar cells. Nature 617, 687–695 (2023).

    Article  ADS  PubMed  CAS  Google Scholar 

  34. Ding, B. et al. Dopant-additive synergism enhances perovskite solar modules. Nature 628, 299–305 (2024).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  35. Zhao, Y. et al. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat. Commun. 9, 1607 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  36. Huang, Z. et al. Anion–π interactions suppress phase impurities in FAPbI3 solar cells. Nature 623, 531–537 (2023).

    Article  ADS  PubMed  CAS  Google Scholar 

  37. Chen, Y. et al. Molecular design and morphology control towards efficient polymer solar cells processed using non-aromatic and non-chlorinated solvents. Adv. Mater. 26, 2744–2749 (2014).

    Article  PubMed  CAS  Google Scholar 

  38. Kirchartz, T. et al. Efficiency limits of organic bulk heterojunction solar cells. J. Phys. Chem. C 113, 17958–17966 (2009).

    Article  CAS  Google Scholar 

  39. Jiang, Q. et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283 (2022).

    Article  ADS  PubMed  CAS  Google Scholar 

  40. Sun, H. et al. Scalable solution-processed hybrid electron transport layers for efficient all-perovskite tandem solar modules. Adv. Mater. 36, 2308706 (2024).

    Article  CAS  Google Scholar 

  41. Yang, W. et al. Tailoring component incorporation for homogenized perovskite solar cells. Sci. Bull. 69, 2555–2564 (2024).

    Article  CAS  Google Scholar 

  42. Lin, R. et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature 620, 994–1000 (2023).

    Article  ADS  PubMed  CAS  Google Scholar 

  43. Kresse, G. et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  44. Kresse, G. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  45. Perdew, J. P. et al. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  PubMed  CAS  Google Scholar 

  46. Dalpian, G. M., Zhao, X,-G., Kazmerski, L. & Zunger, A. Formation and composition-dependent properties of alloys of cubic halide perovskites. Chem. Mater. 31, 2497–2506 (2019).

    Article  CAS  Google Scholar 

  47. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  48. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  PubMed  CAS  Google Scholar 

  49. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  ADS  PubMed  Google Scholar 

  50. Frisch, M. J. et al. Gaussian 09 Revision D.01 (Gaussian, 2009).

  51. Chen, X. et al. Lanthanides with unusually low oxidation states in the PrB3 and PrB4 boride clusters. Inorg. Chem. 58, 411–418 (2019).

    Article  PubMed  CAS  Google Scholar 

  52. Pantazis, D. A., & Neese, F. All-electron scalar relativistic basis sets for the lanthanides. J. Chem. Theory Comput. 5, 2229–2238 (2009).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

S.Y. and C.L. thank the Core Facilities Sharing Platform of Xi’an Jiaotong University (XJTU) for performing various characterizations; Y.L. and C.L. thank the staff from the BL02U beamline of the Shanghai Synchrotron Radiation Facility (SSRF) for assistance during data collection. We thank Y. Liang, H. Guo and Y. Zhang at the Instrument Analysis Center of Xi’an Jiaotong University for their assistance with TOF-SIMS, KPFM and HR-TEM analyses, respectively. We also thank the National Key Research and Development Program of China (2024YFE0201800), the National Natural Science Foundation of China (62304111, 22201227, 12274337, U1866203, 92066207, 62175268, 52472199), the Shaanxi Fundamental Science Research Project for Mathematics and Physics (22JSY015, 23JSY005), the Young Talent Fund of Xi’an Association for Science and Technology (959202313020), the Shaanxi Province science and technology activities for overseas students selected funding project (2023015), the State Key Laboratory for Strength and Vibration of Mechanical Structures (SV2023-KF-18), the youth project in natural science and engineering technology (2023SYJ15), the Project of State Key Laboratory of Organic Electronics and Information Displays, the Qin Chuang Yuan Program of Shaan Xi Province (grant no. 2021QCYRC4-37), the Nanjing University of Posts and Telecommunications (GZR2023010046), the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (NY223053), the China Fundamental Research Funds for the Central Universities, the China Postdoctoral Science Foundation (grant no. 2022M721026), the Joint Fund of Provincial Science, and Technology Research and Development Plan of Henan Province (Grant No. 232301420004), the Science and Technology Development Fund, Macao SAR (file no. 0010/2022/AMJ, 0060/2023/RIA1, 006/2022/ALC, 0122/2024/AMJ), the research fund of UM (file no. MYRG-GRG2023-00065-IAPME-UMDF).

Author information

Authors and Affiliations

Authors

Contributions

W.C., T.Y., M.L., S.Y. and C.L. conceptualized the study; Y.L., Z.L., S.L., T. Liu, W.M., Y.S. and C.L. devised the methodology; Y.L., Z.L., S.L., Y.S., W.Z., Z.Z., J.Z., W.Y., H.G., J.X., D.W., F.D., A.Z., J.L., H.C., B.W., N.Z., H.W., X.L., T. Li, C.K., D.Z., S.C. and Z.Y. conducted the investigation; Y.L., S.L., Y.S. and W.Y. performed the visualization; S.Y., M.L. and C.L. helped with funding acquisition; W.C., S.Y., M.L. and C.L. helped with the project administration; G.X., S.Y., T.Y., W.C., M.L., W.H., and C.L. supervised the study; Y.L. and C.L. wrote the original draft; G.F., L.E., G.X., W.C., T.Y., S.Y., M.L. and C.L. wrote, reviewed and edited the paper. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Guichuan Xing, Shengchun Yang, Tao Yang, Wenting Cai, Meng Li or Chao Liang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Ana Montero-Alejo, Jae Yun and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Materials

Supplementary Notes 1–13, Supplementary Figs. 1–53, Supplementary Tables 1–10 and Supplementary References.

Reporting Summary

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Lin, Z., Lv, S. et al. A Nd@C82–polymer interface for efficient and stable perovskite solar cells. Nature 642, 78–84 (2025). https://doi.org/10.1038/s41586-025-08961-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-025-08961-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing