Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

ChIP-DIP maps binding of hundreds of proteins to DNA simultaneously and identifies diverse gene regulatory elements

Abstract

Gene expression is controlled by dynamic localization of thousands of regulatory proteins to precise genomic regions. Understanding this cell type-specific process has been a longstanding goal yet remains challenging because DNA–protein mapping methods generally study one protein at a time. Here, to address this, we developed chromatin immunoprecipitation done in parallel (ChIP-DIP) to generate genome-wide maps of hundreds of diverse regulatory proteins in a single experiment. ChIP-DIP produces highly accurate maps within large pools (>160 proteins) for all classes of DNA-associated proteins, including modified histones, chromatin regulators and transcription factors and across multiple conditions simultaneously. First, we used ChIP-DIP to measure temporal chromatin dynamics in primary dendritic cells following LPS stimulation. Next, we explored quantitative combinations of histone modifications that define distinct classes of regulatory elements and characterized their functional activity in human and mouse cell lines. Overall, ChIP-DIP generates context-specific protein localization maps at consortium scale within any molecular biology laboratory and experimental system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ChIP-DIP is a highly multiplexed method for mapping proteins to genomic DNA.
Fig. 2: ChIP-DIP accurately maps known protein–DNA interactions across a range of multiplexed protein numbers, protein compositions and cell numbers.
Fig. 3: ChIP-DIP accurately maps dozens of functionally diverse histone modifications and chromatin regulators.
Fig. 4: ChIP-DIP accurately maps dozens of TFs representing diverse functional classes and all three RNAPs.
Fig. 5: ChIP-DIP reveals dynamics changes in the chromatin landscape following LPS stimulation of primary mDCs.
Fig. 6: Distinct chromatin signatures define the promoters of each RNAP.
Fig. 7: Combinations of histone modifications distinguish RNAP II promoter type, activity and potential.
Fig. 8: Distinct combinations of histone acetylation marks define unique enhancer types that differ in their activity and developmental potential.

Similar content being viewed by others

Data availability

All ChIP-DIP datasets generated in this study are available at GEO: GSE227773. Accession numbers for publicly available datasets used in this study are listed in Supplementary Methods.

Code availability

Publicly available software and packages were used in this study as indicated in Methods and Supplementary Methods. The original code for the ChIP-DIP pipeline is available on GitHub at https://github.com/GuttmanLab/chipdip-pipeline/tree/Paper (https://doi.org/10.5281/zenodo.13952458) (ref. 115).

References

  1. Bednar, J. et al. Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. Proc. Natl Acad. Sci. USA 95, 14173–14178 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. Huang, H., Sabari, B. R., Garcia, B. A., Allis, C. D. & Zhao, Y. SnapShot: histone modifications. Cell 159, 458 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Tekel, S. J. & Haynes, K. A. Molecular structures guide the engineering of chromatin. Nucleic Acids Res. 45, 7555–7570 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mashtalir, N. et al. Chromatin landscape signals differentially dictate the activities of mSWI/SNF family complexes. Science 373, 306–315 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. He, S. et al. Structure of nucleosome-bound human BAF complex. Science 367, 875–881 (2020).

    Article  PubMed  CAS  Google Scholar 

  7. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Barba-Aliaga, M., Alepuz, P. & Pérez-Ortín, J. E. Eukaryotic RNA polymerases: the many ways to transcribe a gene. Front. Mol. Biosci. 8, 663209 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Roeder, R. G. Role of general and gene-specific cofactors in the regulation of eukaryotic transcription. Cold Spring Harb. Symp. Quant. Biol. 63, 201–218 (1998).

    CAS  Google Scholar 

  10. Malik, S. & Roeder, R. G. Regulation of the RNA polymerase II pre-initiation complex by its associated coactivators. Nat. Rev. Genet. 24, 767–782 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Ho, L. & Crabtree, G. R. Chromatin remodelling during development. Nature 463, 474–484 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein–DNA interactions. Science 316, 1497–1502 (2007).

    Article  PubMed  CAS  Google Scholar 

  13. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  PubMed  CAS  Google Scholar 

  15. Robertson, G. et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat. Methods 4, 651–657 (2007).

    Article  PubMed  CAS  Google Scholar 

  16. He, Q., Johnston, J. & Zeitlinger, J. ChIP-nexus enables improved detection of in vivo transcription factor binding footprints. Nat. Biotechnol. 33, 395–401 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Serandour, A. A., Brown, G. D., Cohen, J. D. & Carroll, J. S. Development of an Illumina-based ChIP-exonuclease method provides insight into FoxA1–DNA binding properties. Genome Biol. 14, R147 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tehranchi, A. K. et al. Pooled ChIP–seq links variation in transcription factor binding to complex disease risk. Cell 165, 730–741 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Aldridge, S. et al. AHT-ChIP–seq: a completely automated robotic protocol for high-throughput chromatin immunoprecipitation. Genome Biol. 14, R124 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Janssens, D. H. et al. Automated CUT&Tag profiling of chromatin heterogeneity in mixed-lineage leukemia. Nat. Genet. 53, 1586–1596 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Skene, P. J., Henikoff, J. G. & Henikoff, S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat. Protoc. 13, 1006–1019 (2018).

    Article  PubMed  CAS  Google Scholar 

  23. Lochs, S. J. A. et al. Combinatorial single-cell profiling of major chromatin types with MAbID. Nat. Methods 21, 72–82 (2024).

    Article  PubMed  CAS  Google Scholar 

  24. Gopalan, S., Wang, Y., Harper, N. W., Garber, M. & Fazzio, T. G. Simultaneous profiling of multiple chromatin proteins in the same cells. Mol. Cell 81, 4736–4746 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Gopalan, S. & Fazzio, T. G. Multi-CUT&Tag to simultaneously profile multiple chromatin factors. STAR Protoc. 3, 101100 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kaya-Okur, H. S., Janssens, D. H., Henikoff, J. G., Ahmad, K. & Henikoff, S. Efficient low-cost chromatin profiling with CUT&Tag. Nat. Protoc. 15, 3264–3283 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kong, N. R., Chai, L., Tenen, D. G. & Bassal, M. A. A modified CUT&RUN protocol and analysis pipeline to identify transcription factor binding sites in human cell lines. STAR Protoc. 2, 100750 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  29. PsychENCODE Consortium et al. The PsychENCODE project. Nat. Neurosci. 18, 1707–1712 (2015).

    Article  Google Scholar 

  30. The Immunological Genome Project Consortium et al. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    Article  Google Scholar 

  31. Partridge, E. C. et al. Occupancy maps of 208 chromatin-associated proteins in one human cell type. Nature 583, 720–728 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. He, Y. et al. Spatiotemporal DNA methylome dynamics of the developing mouse fetus. Nature 583, 752–759 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Sisu, C. et al. Transcriptional activity and strain-specific history of mouse pseudogenes. Nat. Commun. 11, 3695 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Chasman, D. & Roy, S. Inference of cell type specific regulatory networks on mammalian lineages. Curr. Opin. Syst. Biol. 2, 130–139 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ota, M. et al. Dynamic landscape of immune cell-specific gene regulation in immune-mediated diseases. Cell 184, 3006–3021 (2021).

    Article  PubMed  CAS  Google Scholar 

  36. Madhani, H. D. et al. Epigenomics: a roadmap, but to where? Science 322, 43–44 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kidder, B. L., Hu, G. & Zhao, K. ChIP–seq: technical considerations for obtaining high-quality data. Nat. Immunol. 12, 918–922 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Quinodoz, S. A. et al. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174, 744–757 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Quinodoz, S. A. et al. RNA promotes the formation of spatial compartments in the nucleus. Cell 184, 5775–5790 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Quinodoz, S. A. et al. SPRITE: a genome-wide method for mapping higher-order 3D interactions in the nucleus using combinatorial split-and-pool barcoding. Nat. Protoc. 17, 36–75 (2022).

    Article  PubMed  CAS  Google Scholar 

  41. Kim, S., Yu, N.-K. & Kaang, B.-K. CTCF as a multifunctional protein in genome regulation and gene expression. Exp. Mol. Med. 47, e166 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  PubMed  CAS  Google Scholar 

  43. Girbig, M., Misiaszek, A. D. & Müller, C. W. Structural insights into nuclear transcription by eukaryotic DNA-dependent RNA polymerases. Nat. Rev. Mol. Cell Biol. 23, 603–622 (2022).

    Article  PubMed  CAS  Google Scholar 

  44. Abascal, F. et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).

    Article  Google Scholar 

  45. Adli, M., Zhu, J. & Bernstein, B. E. Genome-wide chromatin maps derived from limited numbers of hematopoietic progenitors. Nat. Methods 7, 615–618 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Karimzadeh, M. & Hoffman, M. M. Virtual ChIP–seq: predicting transcription factor binding by learning from the transcriptome. Genome Biol. 23, 126 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ernst, J. & Kellis, M. Chromatin-state discovery and genome annotation with ChromHMM. Nat. Protoc. 12, 2478–2492 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Spicuglia, S. & Vanhille, L. Chromatin signatures of active enhancers. Nucleus 3, 126–131 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Steger, D. J. et al. DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol. Cell. Biol. 28, 2825–2839 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Gates, L. A., Foulds, C. E. & O’Malley, B. W. Histone marks in the ‘driver’s seat’: functional roles in steering the transcription cycle. Trends Biochem. Sci. 42, 977–989 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Karmodiya, K., Krebs, A. R., Oulad-Abdelghani, M., Kimura, H. & Tora, L. H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells. BMC Genomics 13, 424 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Chen, Z., Djekidel, M. N. & Zhang, Y. Distinct dynamics and functions of H2AK119ub1 and H3K27me3 in mouse preimplantation embryos. Nat. Genet. 53, 551–563 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Saksouk, N., Simboeck, E. & Déjardin, J. Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin 8, 3 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Chen, T. & Dent, S. Y. R. Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat. Rev. Genet. 15, 93–106 (2014).

    Article  PubMed  CAS  Google Scholar 

  55. Kirtana, R., Manna, S. & Patra, S. K. Molecular mechanisms of KDM5A in cellular functions: facets during development and disease. Exp. Cell Res. 396, 112314 (2020).

    Article  PubMed  CAS  Google Scholar 

  56. Shilatifard, A. Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr. Opin. Cell Biol. 20, 341–348 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Geng, Z. & Gao, Z. Mammalian PRC1 complexes: compositional complexity and diverse molecular mechanisms. Int. J. Mol. Sci. 21, 8594 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Mierlo, G., van, Veenstra, G. J. C., Vermeulen, M. & Marks, H. The complexity of PRC2 subcomplexes. Trends Cell Biol. 29, 660–671 (2019).

    Article  PubMed  Google Scholar 

  59. Bosch-Presegué, L. et al. Mammalian HP1 isoforms have specific roles in heterochromatin structure and organization. Cell Rep. 21, 2048–2057 (2017).

    Article  PubMed  Google Scholar 

  60. Mazzocca, M., Colombo, E., Callegari, A. & Mazza, D. Transcription factor binding kinetics and transcriptional bursting: what do we really know? Curr. Opin. Struct. Biol. 71, 239–248 (2021).

    Article  PubMed  CAS  Google Scholar 

  61. Bartman, C. R. et al. Transcriptional burst initiation and polymerase pause release are key control points of transcriptional regulation. Mol. Cell 73, 519–532 (2019).

    Article  PubMed  CAS  Google Scholar 

  62. Rada-Iglesias, A. et al. Whole-genome maps of USF1 and USF2 binding and histone H3 acetylation reveal new aspects of promoter structure and candidate genes for common human disorders. Genome Res. 18, 380–392 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. O’Connor, L., Gilmour, J. & Bonifer, C. The role of the ubiquitously expressed transcription factor Sp1 in tissue-specific transcriptional regulation and in disease. Yale J. Biol. Med. 89, 513–525 (2016).

    Google Scholar 

  64. Li, Z., Cogswell, M., Hixson, K., Brooks-Kayal, A. R. & Russek, S. J. Nuclear respiratory factor 1 (NRF-1) controls the activity dependent transcription of the GABA-A receptor β1 subunit gene in neurons. Front. Mol. Neurosci. 11, 285 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Horn, H. F. & Vousden, K. H. Coping with stress: multiple ways to activate p53. Oncogene 26, 1306–1316 (2007).

    Article  PubMed  CAS  Google Scholar 

  66. Fischer, M. Census and evaluation of p53 target genes. Oncogene 36, 3943–3956 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Akberdin, I. R. et al. Pluripotency gene network dynamics: system views from parametric analysis. PLoS ONE 13, e0194464 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Reith, W. et al. MHC class II regulatory factor RFX has a novel DNA-binding ___domain and a functionally independent dimerization ___domain. Genes Dev. 4, 1528–1540 (1990).

    Article  PubMed  CAS  Google Scholar 

  69. Brivanlou, A. H. & Darnell, J. E. Signal transduction and the control of gene expression. Science 295, 813–818 (2002).

    Article  PubMed  CAS  Google Scholar 

  70. Satoh, J., Kawana, N. & Yamamoto, Y. Pathway analysis of ChIP–seq-based NRF1 target genes suggests a logical hypothesis of their involvement in the pathogenesis of neurodegenerative diseases. Gene Regul. Syst. Biol. 7, GRSB.S13204 (2013).

    Article  Google Scholar 

  71. Qi, B., Newcomer, R. & Sang, Q.-X. ADAM19/adamalysin 19 structure, function, and role as a putative target in tumors and inflammatory diseases. Curr. Pharm. Des. 15, 2336–2348 (2009).

    Article  PubMed  CAS  Google Scholar 

  72. Schoch, S., Cibelli, G. & Thiel, G. Neuron-specific gene expression of synapsin I. Major role of a negative regulatory mechanism. J. Biol. Chem. 271, 3317–3323 (1996).

    Article  PubMed  CAS  Google Scholar 

  73. Martin, D. & Grapin-Botton, A. The importance of REST for development and function of beta cells. Front. Cell Dev. Biol. 5, 12 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bao, F., LoVerso, P. R., Fisk, J. N., Zhurkin, V. B. & Cui, F. p53 binding sites in normal and cancer cells are characterized by distinct chromatin context. Cell Cycle 16, 2073–2085 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Otto, S. J. et al. A new binding motif for the transcriptional repressor REST uncovers large gene networks devoted to neuronal functions. J. Neurosci. 27, 6729–6739 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Garber, M. et al. A high-throughput chromatin immunoprecipitation approach reveals principles of dynamic gene regulation in mammals. Mol. Cell 47, 810–822 (2012).

    Article  PubMed  CAS  Google Scholar 

  77. Ernst, J. & Kellis, M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat. Biotechnol. 28, 817–825 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  PubMed  CAS  Google Scholar 

  79. Wang, H. et al. H3K4me3 regulates RNA polymerase II promoter-proximal pause-release. Nature 615, 339–348 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Bilodeau, S., Kagey, M. H., Frampton, G. M., Rahl, P. B. & Young, R. A. SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state. Genes Dev. 23, 2484–2489 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Zentner, G. E. & Henikoff, S. Regulation of nucleosome dynamics by histone modifications. Nat. Struct. Mol. Biol. 20, 259–266 (2013).

    Article  PubMed  CAS  Google Scholar 

  82. Giaimo, B. D. et al. Histone variant H2A.Z deposition and acetylation directs the canonical Notch signaling response. Nucleic Acids Res. 46, 8197–8215 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Giaimo, B. D., Ferrante, F., Herchenröther, A., Hake, S. B. & Borggrefe, T. The histone variant H2A.Z in gene regulation. Epigenetics Chromatin 12, 37 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Gévry, N., Chan, H. M., Laflamme, L., Livingston, D. M. & Gaudreau, L. p21 transcription is regulated by differential localization of histone H2A.Z. Genes Dev. 21, 1869–1881 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gévry, N. et al. Histone H2A.Z is essential for estrogen receptor signaling. Genes Dev. 23, 1522–1533 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Akerberg, B. N. et al. A reference map of murine cardiac transcription factor chromatin occupancy identifies dynamic and conserved enhancers. Nat. Commun. 10, 4907 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Currey, L., Thor, S. & Piper, M. TEAD family transcription factors in development and disease. Development 148, dev196675 (2021).

    Article  PubMed  CAS  Google Scholar 

  88. Meers, M. P., Llagas, G., Janssens, D. H., Codomo, C. A. & Henikoff, S. Multifactorial profiling of epigenetic landscapes at single-cell resolution using MulTI-Tag. Nat. Biotechnol. 41, 708–716 (2023).

    Article  PubMed  CAS  Google Scholar 

  89. Stuart, T. et al. Nanobody-tethered transposition enables multifactorial chromatin profiling at single-cell resolution. Nat. Biotechnol. 41, 806–812 (2023).

    Article  PubMed  CAS  Google Scholar 

  90. Bartosovic, M., Kabbe, M. & Castelo-Branco, G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nat. Biotechnol. 39, 825–835 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Xiong, H., Wang, Q., Li, C. C. & He, A. Single-cell joint profiling of multiple epigenetic proteins and gene transcription. Sci. Adv. 10, eadi3664 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Vangala, P. et al. High-resolution mapping of multiway enhancer–promoter interactions regulating pathogen detection. Mol. Cell 80, 359–373 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Arrastia, M. V. et al. Single-cell measurement of higher-order 3D genome organization with scSPRITE. Nat. Biotechnol. 40, 64–73 (2022).

    Article  PubMed  CAS  Google Scholar 

  94. Goronzy, I. N. et al. Simultaneous mapping of 3D structure and nascent RNAs argues against nuclear compartments that preclude transcription. Cell Rep. 41, 111730 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Donnard, E. et al. Comparative analysis of immune cells reveals a conserved regulatory lexicon. Cell Syst. 6, 381–394 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Robinson, J. T. et al. Integrative Genomics Viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Schmidl, C., Rendeiro, A. F., Sheffield, N. C. & Bock, C. ChIPmentation: fast, robust, low-input ChIP–seq for histones and transcription factors. Nat. Methods 12, 963–965 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Daley, T. & Smith, A. D. Predicting the molecular complexity of sequencing libraries. Nat. Methods 10, 325–327 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Hammal, F., Langen, P., de Bergon, A., Lopez, F. & Ballester, B. ReMap 2022: a database of human, mouse, Drosophila and Arabidopsis regulatory regions from an integrative analysis of DNA-binding sequencing experiments. Nucleic Acids Res. 50, D316–D325 (2021).

    Article  PubMed Central  Google Scholar 

  104. McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: Uniform Manifold Approximation and Projection. J. Open Source Softw. 3, 861 (2018).

    Article  Google Scholar 

  105. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Dreos, R., Ambrosini, G., Groux, R., Cavin Périer, R. & Bucher, P. The Eukaryotic Promoter Database in its 30th year: focus on non-vertebrate organisms. Nucleic Acids Res. 45, D51–D55 (2017).

    Article  PubMed  CAS  Google Scholar 

  107. Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019).

    Article  PubMed  CAS  Google Scholar 

  108. Satopää, V., Albrecht, J., Irwin, D. & Raghavan, B. Finding a ‘kneedle’ in a haystack: detecting knee points in system behavior. In 2011 31st International Conference on Distributed Computing Systems Workshops 166–171 (IEEE, 2011).

  109. Liang, K., Patil, A. & Nakai, K. Discovery of intermediary genes between pathways using sparse regression. PLoS ONE 10, e0137222 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Tommaso, P. D. et al. Nextflow enables reproducible computational workflows. Nat. Biotechnol. 35, 316–319 (2017).

    Article  PubMed  Google Scholar 

  111. Kluger, Y., Basri, R., Chang, J. T. & Gerstein, M. Spectral biclustering of microarray data: coclustering genes and conditions. Genome Res. 13, 703–716 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Zitnik, M. & Zupan, B. NIMFA: a Python library for nonnegative matrix factorization. J. Mach. Learn. Res. 13, 849–853 (2012).

    Google Scholar 

  114. Zheng, R. et al. Cistrome Data Browser: expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Res. 47, D729–D735 (2019).

    Article  PubMed  Google Scholar 

  115. Yeh, B. & Goronzy, I. GuttmanLab/chipdip-pipeline: Nature Genetics (2024) paper release (v1.0_publication). Zenodo https://doi.org/10.5281/zenodo.13952458 (2024).

Download references

Acknowledgements

We thank S. Hiley for editing. We thank I.-M. Strazhnik and A. Koivula for illustrations and formatting the figures. This work was funded by grants from the NIH (R01 HG012216, R01 DA053178, U01 DK127420 to M.G.), the Chan Zuckerberg Initiative Ben Barres Early Career Acceleration Award, the NIH UCLA-Caltech Medical Scientist Training Program (T32GM008042, I.N.G. and B.T.Y.), NCI F30CA278005 (J.K.G.) and the University of Southern California MD/PhD program (J.K.G.). Sequencing was performed at the Millard and Muriel Jacobs Genetics and Genomics facility at Caltech with support from I. Antoshechkin and at the Broad Institute Genomics Platform.

Author information

Authors and Affiliations

Authors

Contributions

A.A.P., M.R.B. and M.G. conceived ChIP-DIP; A.A.P. and M.R.B. developed ChIP-DIP; A.A.P., I.N.G. and J.K.G. optimized ChIP-DIP; A.A.P. and I.N.G. generated the data presented in this paper; C.S.L., O.E. and A.B. cultured, collected and treated cells; I.N.G. developed the computational pipeline; B.T.Y. generated the GitHub repository for the pipeline; I.N.G. performed data analysis and visualization; A.A.P., I.N.G. and M.G. generated figures and wrote the paper.

Corresponding author

Correspondence to Mitchell Guttman.

Ethics declarations

Competing interests

M.G., A.A.P., M.R.B., I.N.G. and J.K.G. are inventors of a submitted patent covering the ChIP-DIP method. The other authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Potential sources of mixing in ChIP-DIP.

(a) Schematic of labeling strategy to generate Protein G beads coupled with a unique antibody-identifying oligonucleotide and a matched antibody. (i) Protein G beads are covalently modified with a biotin, (ii) oligonucleotides containing a 3’ biotin are conjugated to streptavidin, (iii) oligo-streptavidin complexes are mixed with biotinylated protein G beads and (iv) protein G beads are mixed with antibodies. This process is repeated for each unique oligonucleotide-antibody pair and then all bead-antibody conjugates are pooled together. (b) Schematic of three potential sources of dissociation of chromatin-antibody-bead-oligo conjugates that could lead to mixing during ChIP-DIP: dissociation 1) between oligo and bead, 2) between antibody and bead, or 3) between antibody and chromatin. (c) If oligos dissociate from their original beads and bind to distinct beads (oligo-bead dissociation), we would expect multiple distinct oligo types on the same bead. To quantify this, we computed the percent uniqueness of oligo-types within each split-pool cluster. The cumulative distribution of the uniqueness of antibody-ID oligos type (x-axis) within individual clusters is shown. (d) If antibodies dissociate from their original bead and reassociate with a different bead (antibody-bead dissociation), we expect that chromatin would associate with empty beads present in the experiment. We show a schematic of the experimental design to test for antibody movement between beads (top) and the quantification of reads per bead assigned to true targets (CTCF) or empty beads added during experimental processing steps (bottom). (e) If proteins (and their crosslinked chromatin) dissociate and reassociate to other beads containing the same epitope-specific antibodies (antibody-chromatin dissociation), we would expect that chromatin purified independently from human and mouse lysates would mix during the procedure. We show a schematic of the human-mouse mixing experimental design to test for chromatin movement (left) and quantification of species-specific reads assigned to human or mouse beads (right).

Extended Data Fig. 2 Mapping multiple components of the same regulator complex within a single experiment.

(a) Visualization of various components of the PRC1 (RING1B, CBX8) and PRC2 (EZH2, SUZ12, EED) complexes that were mapped within the same ChIP-DIP pool (K562 52 Antibody Pool) along a genomic region (hg38, chr4:500,000-5,500,000).

Extended Data Fig. 3 Histone modifications associated with five chromatin states.

(a) UMAP embedding of 12 histone modifications measured in K562 correspond to five chromatin states. (b) Metaplot of signal distribution of H3K36me3, H3K79me1 and H3K79me2 across the gene body of protein coding genes in K562. (c) Correlation scatterplot of H3K9Ac and H3K4me3 signals at promoter sites in mESC. (d) Enrichment heatmap of H3K9me3 and H4K20me3 at various associated (ZNF genes, LTRs, LINES) and unassociated (SINES, TSS) genomic elements in K562. H3 is shown as reference. For A-D, see Methods for details on ChIP-DIP experiments used for each analysis.

Extended Data Fig. 4 Chromatin regulators co-localizing with known histone targets.

(a) Metaplots of read coverage for three H3K4me3-associated chromatin regulators (JARID1A, RBBP5, PHF8) and H3K4me3 at four promoter groups in mESC. Promoter groups were identified using k-means clustering of CR signal. (b) Metaplot showing colocalization of multiple PRC1 and PRC2 members and their respective histone modifications at RING1B sites in K562. (c) Genome-wide correlation matrix of multiple HP1 proteins versus heterochromatin and euchromatin markers in K562. For A-C, see Methods for details on ChIP-DIP experiments used for each analysis.

Extended Data Fig. 5 Simultaneous mapping of distinct RNA polymerases and their isoforms.

(a) Bar graph showing enrichment of gene class coverage (rRNA, mRNA, snRNA or tRNA) for RNAP I, II and III in mESC. For each RNAP, the bar of its associated class (or classes) is highlighted. (b) Visualization of RNAP II phosphorylation isoforms across the NUP214 gene in K562 (left). Metaplot of signal distribution of RNAP II phosphorylation isoforms across the gene body of protein coding genes in K562 (right).

Extended Data Fig. 6 Chromatin dynamics and the relationship to gene expression following LPS stimulation in mDCs.

(a) Heatmap of change in normalized coverage per 100 kb bin for various mapped factors. For each factor, only enriched bins are shown and bins are sorted left-to-right by magnitude of change. (b) Violin plot of gene expression fold change for 6hrs vs 0hrs (left) and 24hrs vs 0hrs (right) grouped by sets of genes corresponding to sets of regions from Fig. 5C(see Methods). Shown are Mann-Whitney U test p-values. (c) Track visualization of H3K27ac at 0hrs, 6hrs and 24hrs across a genomic region (mm10, chr5:29,838,000-30,024,000) upstream of the inflammatory gene IL6 and containing regions belonging to the ‘activated’ set from Fig. 5B. (d) Heatmap of spearman correlation coefficients between histone coverage change and gene expression change between time points. Change is defined as the ratio between the two time points. All genes were included in the correlation heatmap on the left; only genes with a fold change of >2 in gene expression were included in the correlation heatmap on the right (see Methods and Supplemental Methods).

Extended Data Fig. 7 Transcription levels of specific clusters of H3K4me3 enriched regions.

(a) Violin plot of the transcriptional levels, measured by the RNAP II occupancy, of the five major clusters of H3K4me3 regions identified in Fig. 7.

Extended Data Fig. 8 Histone acetylation marks are highly correlated genome-wide.

(a) Genome-wide pearson correlation coefficients of 15 different histone acetylation marks in mESC. Correlations are based on coverage computed in 10 kb windows. (b) Comparison of 15 different histone acetylation marks across a genomic region (mm10, chr1:55,048,000-55,148,000) in mESC.

Extended Data Fig. 9 Enrichment profiles for NMF generated combinations (C1-C5) of histone acetylation marks.

(a) RNAP II, TF and CR enrichment matrix for regions assigned to combinations (C1-C5) from NMF decomposition of highly acetylated regions using histone acetylation marks, shown in Fig. 8. (b) Heatmap of genome position enrichments relative to TSS for regions assigned to combinations. (c) Transcription factors of top 10 most significant sequence motifs for regions assigned to each combination are listed.

Extended Data Fig. 10 Profiles for high density regions of NANOG-OCT4-SOX2.

(a) Plot showing normalized region scores (x-axis) for peak regions of NANOG-OCT4-SOX2, ordered by rank (y-axis). High density regions are defined as regions past the point where the slope = 1. (b) Track visualization of NANOG-OCT4-SOX2 upstream of the gene for the pluripotency transcription factor KLF4 in mESC. A high density region is indicated with a red bar; low density regions are indicated with grey bars. (c) Visualization of NANOG-OCT4-SOX2 near the TET2 gene, a developmentally associated chromatin regulator, in mESC. A high density region internal to the gene is indicated with a red bar. (d) Coverage metaplots over low density regions (LDR) vs high density regions (HDR) for pluripotency transcription factors and other transcriptional-related factors. Metagenes are centered on the region and the lengths represent the approximate difference in mean lengths (500 bps for LDRs and 14,500 bps for HDRs). An additional 4 kb surrounding each region is shown. (e) Enrichment heatmap for GO terms of genes associated with HDRs or LDRs containing C4, C5 or neither C4/C5 chromatin signatures. (f) Enrichment heatmap for development-associated GO terms of genes associated with HDRs or LDRs containing C4, C5 or neither C4/C5 chromatin signatures.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Notes 1–3, Methods and Tables 1–5.

Reporting Summary

Peer Review File

Supplementary Data 1

Antibody ID oligonucleotide sequences.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez, A.A., Goronzy, I.N., Blanco, M.R. et al. ChIP-DIP maps binding of hundreds of proteins to DNA simultaneously and identifies diverse gene regulatory elements. Nat Genet 56, 2827–2841 (2024). https://doi.org/10.1038/s41588-024-02000-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-024-02000-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing