Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The contribution of gametic phase disequilibrium to the heritability of complex traits

Abstract

Nonrandom mating induces genome-wide correlations between unlinked genetic variants, known as gametic phase disequilibrium (GPD), whose contribution to heritability remains uncharacterized. Here we introduce the disequilibrium genome-based restricted maximum likelihood (DGREML) method to simultaneously quantify the additive contribution of SNPs to heritability and that of their directional covariances. We applied DGREML to 26 phenotypes of 550,000 individuals from diverse biobanks and found that cross-autosome GPD contributes 10–27% of the SNP-based heritability of height, educational attainment, intelligence, income, self-rated health status and sedentary behaviors. We observed a differential contribution of GPD to the heritability of height between the UK, Chinese and Japanese populations. Finally, bivariate DGREML analyses of educational attainment and height show that cross-autosome GPD contributes at least 32% of their genetic correlation. Altogether, our versatile and powerful method reveals understudied features of the genetic architecture of complex traits and informs potential mechanisms generating these features.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simulation results under AM equilibrium.
Fig. 2: Simulation results under geographical stratification.
Fig. 3: DGREML estimates for 26 complex traits in the UKB.

Similar content being viewed by others

Data availability

Individual-level data used in this study are available through specific application to the relevant biobanks. UK Biobank data were accessed under project 12505. Data of the Biobank Japan Project are available at the National Bioscience Database Center (NBDC) Human Database with the research ID hum0014 (https://humandbs.biosciencedbc.jp/hum0014-v26). The Data Sharing Policy of the China Kadoorie Biobank is described at www.ckbiobank.org/data-access/data-2. Specific queries about data access should be addressed to [email protected].

Code availability

GCTA software to estimate parameters is available at https://yanglab.westlake.edu.cn/software/gcta/index.html. Scripts used to run simulations and the makeDGRM program to calculate DGRM are available via Zenodo at https://doi.org/10.5281/zenodo.13831647 (ref. 48). PLINK for quality control of the data is available at https://www.cog-genomics.org/plink/1.9/ and https://www.cog-genomics.org/plink/2.0/.

References

  1. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pasaniuc, B. & Price, A. L. Dissecting the genetics of complex traits using summary association statistics. Nat. Rev. Genet. 18, 117–127 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Wray, N. R. et al. Pitfalls of predicting complex traits from SNPs. Nat. Rev. Genet. 14, 507–515 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. de Vlaming, R. et al. Meta-GWAS accuracy and power (MetaGAP) calculator shows that hiding heritability is partially due to imperfect genetic correlations across studies. PLoS Genet. 13, e1006495 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dudbridge, F. Power and predictive accuracy of polygenic risk scores. PLoS Genet. 9, e1003348 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ning, Z., Pawitan, Y. & Shen, X. High-definition likelihood inference of genetic correlations across human complex traits. Nat. Genet. 52, 859–864 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Haseman, J. K. & Elston, R. C. The investigation of linkage between a quantitative trait and a marker locus. Behav. Genet. 2, 3–19 (1972).

    Article  CAS  PubMed  Google Scholar 

  9. Pazokitoroudi, A. et al. Efficient variance components analysis across millions of genomes. Nat. Commun. 11, 4020 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu, Y. & Sankararaman, S. A scalable estimator of SNP heritability for biobank-scale data. Bioinformatics 34, i187–i194 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Golan, D., Lander, E. S. & Rosset, S. Measuring missing heritability: inferring the contribution of common variants. Proc. Natl Acad. Sci. USA 111, E5272–E5281 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Speed, D., Hemani, G., Johnson, M. R. & Balding, D. J. Improved heritability estimation from genome-wide SNPs. Am. J. Hum. Genet. 91, 1011–1021 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Speed, D. et al. Reevaluation of SNP heritability in complex human traits. Nat. Genet. 49, 986–992 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang, J. et al. Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat. Genet. 47, 1114–1120 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee, S. H. et al. Estimation of SNP heritability from dense genotype data. Am. J. Hum. Genet. 93, 1151–1155 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Speed, D., Hemani, G., Johnson, M. R. & Balding, D. J. Response to Lee et al.: SNP-based heritability analysis with dense data. Am. J. Hum. Genet. 93, 1155–1157 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Evans, L. M. et al. Comparison of methods that use whole genome data to estimate the heritability and genetic architecture of complex traits. Nat. Genet. 50, 737–745 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ma, R. & Dicker, L. H. The Mahalanobis kernel for heritability estimation in genome-wide association studies: fixed-effects and random-effects methods. Preprint at https://arxiv.org/abs/1901.02936 (2019).

  20. Schoech, A. P. et al. Quantification of frequency-dependent genetic architectures in 25 UK Biobank traits reveals action of negative selection. Nat. Commun. 10, 790 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zeng, J. et al. Signatures of negative selection in the genetic architecture of human complex traits. Nat. Genet. 50, 746–753 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Wainschtein, P. et al. Assessing the contribution of rare variants to complex trait heritability from whole-genome sequence data. Nat. Genet. 54, 263–273 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gimelfarb, A. A general linear model for the genotypic covariance between relatives under assortative mating. J. Math. Biol. 13, 209–226 (1981).

    Article  Google Scholar 

  24. Nagylaki, T. The correlation between relatives with assortative mating. Ann. Hum. Genet. 42, 131–137 (1978).

    Article  CAS  PubMed  Google Scholar 

  25. Risch, H. The correlation between relatives under assortative malting for an X-linked and autosomal trait. Ann. Hum. Genet. 43, 151–165 (1979).

    Article  CAS  PubMed  Google Scholar 

  26. Kemper, K. E. et al. Phenotypic covariance across the entire spectrum of relatedness for 86 billion pairs of individuals. Nat. Commun. 12, 1050 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Border, R. et al. Assortative mating biases marker-based heritability estimators. Nat. Commun. 13, 660 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rawlik, K., Canela-Xandri, O., Woolliams, J. & Tenesa, A. SNP heritability: what are we estimating? Preprint at bioRxiv https://doi.org/10.1101/2020.09.15.276121 (2020).

  29. Crow, J. F. & Kimura, M. An Introduction to Population Genetics Theory (Blackburn Press, 2009).

  30. Yengo, L. et al. Imprint of assortative mating on the human genome. Nat. Hum. Behav. 2, 948–954 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Horwitz, T. B., Balbona, J. V., Paulich, K. N. & Keller, M. C. Evidence of correlations between human partners based on systematic reviews and meta-analyses of 22 traits and UK Biobank analysis of 133 traits. Nat. Hum. Behav. 7, 1568–1583 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wright, S. The genetical structure of populations. Ann. Eugen. 15, 323–354 (1951).

    Article  CAS  PubMed  Google Scholar 

  33. Patterson, N., Price, A. L. & Reich, D. Population structure and Eigenanalysis. PLoS Genet. 2, e190 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Robinson, M. R. et al. Genetic evidence of assortative mating in humans. Nat. Hum. Behav. 1, 0016 (2017).

    Article  Google Scholar 

  35. Gianola, D. Assortative mating and the genetic correlation. Theor. Appl. Genet. 62, 225–231 (1982).

    Article  CAS  PubMed  Google Scholar 

  36. Border, R. et al. Cross-trait assortative mating is widespread and inflates genetic correlation estimates. Science 378, 754–761 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Walters, R. G. et al. Genotyping and population characteristics of the China Kadoorie Biobank. Cell Genom. 3, 100361 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yamamoto, K. et al. Genetic footprints of assortative mating in the Japanese population. Nat. Hum. Behav. 7, 65–73 (2023).

    Article  PubMed  Google Scholar 

  39. Yengo, L. et al. A saturated map of common genetic variants associated with human height. Nature 610, 704–712 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Keller, M. C. et al. The genetic correlation between height and IQ: shared genes or assortative mating? PLoS Genet. 9, e1003451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Beauchamp, J. P., Cesarini, D., Johannesson, M., Lindqvist, E. & Apicella, C. On the sources of the height-intelligence correlation: new insights from a bivariate ACE model with assortative mating. Behav. Genet. 41, 242–252 (2011).

    Article  PubMed  Google Scholar 

  42. Bai, Z. & Silverstein, J. W. Spectral Analysis of Large Dimensional Random Matrices (Springer, 2010); https://doi.org/10.1007/978-1-4419-0661-8

  43. Niarchou, M. et al. Genome-wide association study of dietary intake in the UK biobank study and its associations with schizophrenia and other traits. Transl. Psychiatry 10, 51 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cong, P.-K. et al. Genomic analyses of 10,376 individuals in the Westlake BioBank for Chinese (WBBC) pilot project. Nat. Commun. 13, 2939 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yengo, L. Code for generating disequilibrium genetic relationship matrix and applications (examples) of the DGREML method using simulated data. Zenodo https://doi.org/10.5281/zenodo.13831647 (2024).

Download references

Acknowledgements

L.Y. is supported by the Australian Research Council (grant nos. DE200100425 and FT220100069) and the Snow Medical Research Foundation. P.M.V. is supported by the Australian Research Council (grant no. FL180100072). Y.O. was supported by JSPS KAKENHI (grant no. 22H00476) and AMED (grant nos. JP21gm4010006, JP22km0405211, JP22ek0410075, JP22km0405217 and JP22ek0109594), JST Moonshot R&D (grant nos. JPMJMS2021 and JPMJMS2024), Takeda Science Foundation and Bioinformatics Initiative of Osaka University Graduate School of Medicine. M.C.K. was supported by NIMH (grant nos. MH130448 and MH100141). The China Kadoorie Biobank (CKB) baseline survey was supported by the Kadoorie Charitable Foundation in Hong Kong. The CKB study was supported by grants from Wellcome Trust (grant nos. 212946/Z/18/Z, 202922/Z/16/Z, 104085/Z/14/Z and 088158/Z/09/Z), the National Natural Science Foundation of China (grant nos. 82192901, 82192904 and 82192900) and the National Key Research and Development Program of China (grant no. 2016YFC0900500) and by core funding from the UK Medical Research Council (grant nos. MC_UU_00017/1, MC_UU_12026/2 and MC_U137686851), Cancer Research UK (grant nos. C16077/A29186 and C500/A16896) and the British Heart Foundation (grant no. CH/1996001/9454) to the Clinical Trial Service Unit and Epidemiological Studies Unit at Oxford University. DNA extraction and genotyping were supported by GlaxoSmithKline and the UK Medical Research Council (grant nos. MC-PC-13049 and MC-PC-14135).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

L.Y. and Y.Z. conceptualized the study. L.Y. and P.M.V. jointly supervised the study. Y.Z., S.S., S.M. and M.G. conducted statistical analyses of UK Biobank, Biobank Japan and China Kadoorie Biobank data with assistance or guidance from L.Y., Y.O., K.Y., R.G.W., M.C.K. and M.E.G. M.C.K., Y.O. and M.E.G. also contributed through suggestions and comments on study design, methods, analyses and their interpretation. Z.C. and L.L. have contributed to data collection, data management and scientific leadership of China Kadoorie Biobank. L.Y., Y.Z. and P.M.V. wrote the paper with the participation of all authors. All the authors approved the final version of the paper.

Corresponding authors

Correspondence to Yuanxiang Zhang or Loic Yengo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Xia Shen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–39 and Notes 1–9.

Reporting Summary

Peer Review File

Supplementary Code 1

This archive contains multiple *.R files and *.RData files to generate Figs. 1–3.

Supplementary Tables

Supplementary Tables 1–10.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Sakaue, S., Morris, S. et al. The contribution of gametic phase disequilibrium to the heritability of complex traits. Nat Genet 57, 1418–1425 (2025). https://doi.org/10.1038/s41588-025-02192-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-025-02192-4

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics