Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Methylarginine targeting chimeras for lysosomal degradation of intracellular proteins

Abstract

A paradigm shift in drug development is the discovery of small molecules that harness the ubiquitin-proteasomal pathway to eliminate pathogenic proteins. Here we provide a modality for targeted protein degradation in lysosomes. We exploit an endogenous lysosomal pathway whereby protein arginine methyltransferases (PRMTs) initiate substrate degradation via arginine methylation. We developed a heterobifunctional small molecule, methylarginine targeting chimera (MrTAC), that recruits PRMT1 to a target protein for induced degradation in lysosomes. MrTAC compounds degraded substrates across cell lines, timescales and doses. MrTAC degradation required target protein methylation for subsequent lysosomal delivery via microautophagy. A library of MrTAC molecules exemplified the generality of MrTAC to degrade known targets and neo-substrates—glycogen synthase kinase 3β, MYC, bromodomain-containing protein 4 and histone deacetylase 6. MrTAC selectively degraded target proteins and drove biological loss-of-function phenotypes in survival, transcription and proliferation. Collectively, MrTAC demonstrates the utility of endogenous lysosomal proteolysis in the generation of a new class of small molecule degraders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MrTAC mediates proximity with PRMT1 for target degradation.
Fig. 2: MrTAC targets GSK3β to lysosomes for degradation.
Fig. 3: Arginine methylation of the protein target underscores MrTAC degradation.
Fig. 4: MrTAC degradation recapitulates loss-of-function phenotypes.
Fig. 5: Induced degradation of endogenous substrates.
Fig. 6: MrTAC regulates cell function via endogenous degradation.

Similar content being viewed by others

Data availability

All data reporting the findings of this study are included in the Article and within the source data found in the Supplementary Information. Proteomics data have been submitted to the ProteomeXchange Consortium in the PRIDE partner repository with the dataset identifier PXD054653. Source data are provided with this paper.

References

  1. Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Adapting proteostasis for disease intervention. Science 319, 916–919 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Li, K. & Crews, C. M. PROTACs: past, present and future. Chem. Soc. Rev. 51, 5214–5236 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Spradlin, J. N., Zhang, E. & Nomura, D. K. Reimagining druggability using chemoproteomic platforms. Acc. Chem. Res. 54, 1801–1813 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Liu, X. & Ciulli, A. Proximity-based modalities for biology and medicine. ACS Cent. Sci. 9, 1269–1284 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sakamoto, K. M. et al. Protacs: chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98, 8554–8559 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chirnomas, D., Hornberger, K. R. & Crews, C. M. Protein degraders enter the clinic—a new approach to cancer therapy. Nat. Rev. Clin. Oncol. 20, 265–278 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Schneider, M. et al. The PROTACtable genome. Nat. Rev. Drug Discov. 20, 789–797 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Weng, G. et al. PROTAC-DB 2.0: an updated database of PROTACs. Nucleic Acids Res. 51, D1367–D1372 (2023).

    Article  PubMed  Google Scholar 

  10. Bashore, C. et al. Targeted degradation via direct 26S proteasome recruitment. Nat. Chem. Biol. 19, 55–63 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Ali, E. M. H., Loy, C. A. & Trader, D. J. ByeTAC: bypassing an E3 ligase for targeted protein degradation. Preprint at bioRxiv https://doi.org/10.1101/2024.01.20.576376 (2024).

  12. Takahashi, D. et al. AUTACs: cargo-specific degraders using selective autophagy. Mol. Cell 76, 797–810 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Ji, C. H. et al. The AUTOTAC chemical biology platform for targeted protein degradation via the autophagy-lysosome system. Nat. Commun. 13, 904 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fu, Y. et al. Degradation of lipid droplets by chimeric autophagy-tethering compounds. Cell Res. 31, 965–979 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, Z. et al. Allele-selective lowering of mutant HTT protein by HTT–LC3 linker compounds. Nature 575, 203–209 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Ahn, G. et al. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nat. Chem. Biol. 17, 937–946 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ahn, G. et al. Elucidating the cellular determinants of targeted membrane protein degradation by lysosome-targeting chimeras. Science 382, eadf6249 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou, Y., Teng, P., Montgomery, N. T., Li, X. & Tang, W. Development of triantennary N-acetylgalactosamine conjugates as degraders for extracellular proteins. ACS Cent. Sci. 7, 499–506 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Caianiello, D. F. et al. Bifunctional small molecules that mediate the degradation of extracellular proteins. Nat. Chem. Biol. 17, 947–953 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Wong, E. & Cuervo, A. M. Integration of clearance mechanisms: the proteasome and autophagy. Cold Spring Harb. Perspect. Biol. 2, a006734 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Varshavsky, A. N-degron and C-degron pathways of protein degradation. Proc. Natl Acad. Sci. USA 116, 358–366 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Poirson, J. et al. Proteome-scale discovery of protein degradation and stabilization effectors. Nature 628, 878–886 (2024).

    Article  CAS  PubMed  Google Scholar 

  24. Owens, D. D. G. et al. A chemical probe to modulate human GID4 pro/N-degron interactions. Nat. Chem. Biol. 20, 1164–1175 (2024).

    Article  CAS  PubMed  Google Scholar 

  25. Ichikawa, S. et al. The E3 ligase adapter cereblon targets the C-terminal cyclic imide degron. Nature 610, 775–782 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Makaros, Y. et al. Ubiquitin-independent proteasomal degradation driven by C-degron pathways. Mol. Cell 83, 1921–1935 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lucas, X. & Ciulli, A. Recognition of substrate degrons by E3 ubiquitin ligases and modulation by small-molecule mimicry strategies. Curr. Opin. Struct. Biol. 44, 101–110 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Nabet, B. et al. The dTAG system for immediate and target-specific protein degradation. Nat. Chem. Biol. 14, 431–441 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Albrecht, L. V., Ploper, D., Tejeda-Muñoz, N. & De Robertis, E. M. Arginine methylation is required for canonical Wnt signaling and endolysosomal trafficking. Proc. Natl Acad. Sci. USA 115, E5317–E5325 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Franco, C. N. et al. Vitamin B6 is governed by the local compartmentalization of metabolic enzymes during growth. Sci. Adv. 9, eadi2232 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Larsen, S. C. et al. Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells. Sci. Signal. 9, rs9 (2016).

    Article  PubMed  Google Scholar 

  32. Bedford, M. T. & Clarke, S. G. Protein arginine methylation in mammals: who, what, and why. Mol. Cell 33, 1–13 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dotson, H. L. & Ngo, J. T. SNAP-tag and HaloTag fused proteins for HaSX8-inducible control over synthetic biological functions in engineered mammalian cells. Preprint at bioRxiv https://doi.org/10.1101/2022.08.12.503781 (2022).

  34. Buckley, D. L. et al. HaloPROTACS: use of small molecule PROTACs to induce degradation of HaloTag fusion proteins. ACS Chem. Biol. 10, 1831–1837 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Erhart, D. et al. Chemical development of intracellular protein heterodimerizers. Chem. Biol. 20, 549–557 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Kaidanovich-Beilin, O. & Woodgett, J. R. GSK-3: functional insights from cell biology and animal models. Front. Mol. Neurosci. 4, 40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Taelman, V. F. et al. Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell 143, 1136–1148 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Douglass, E. F., Miller, C. J., Sparer, G., Shapiro, H. & Spiegel, D. A. A comprehensive mathematical model for three-body binding equilibria. J. Am. Chem. Soc. 135, 6092–6099 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Haid, R. T. U. & Reichel, A. A mechanistic pharmacodynamic modeling framework for the assessment and optimization of proteolysis targeting chimeras (PROTACs). Pharmaceutics 15, 195 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Weibrecht, I. et al. Proximity ligation assays: a recent addition to the proteomics toolbox. Expert Rev. Proteomics 7, 401–409 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy 17, 1–382 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sahu, R. et al. Microautophagy of cytosolic proteins by late endosomes. Dev. Cell 20, 131–139 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bishop, N. & Woodman, P. ATPase-defective mammalian VPS4 localizes to aberrant endosomes and impairs cholesterol trafficking. Mol. Biol. Cell 11, 227–239 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. El-Khoueiry, A. B. et al. Phase 1 study of GSK3368715, a type I PRMT inhibitor, in patients with advanced solid tumors. Br. J. Cancer 129, 309–317 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim, E. et al. Protection of c-Fos from autophagic degradation by PRMT1-mediated methylation fosters gastric tumorigenesis. Int. J. Biol. Sci. 19, 3640–3660 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hooper, C., Killick, R. & Lovestone, S. The GSK3 hypothesis of Alzheimer’s disease. J. Neurochem. 104, 1433–1439 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bilic, J. et al. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 316, 1619–1622 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Clevers, H. & Nusse, R. Wnt/β-catenin signaling and disease. Cell 149, 1192–1205 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Kress, T. R., Sabò, A. & Amati, B. MYC: connecting selective transcriptional control to global RNA production. Nat. Rev. Cancer 15, 593–607 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Chen, H., Liu, H. & Qing, G. Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct. Target. Ther. 3, 5 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Boike, L. et al. Discovery of a functional covalent ligand targeting an intrinsically disordered cysteine within MYC. Cell Chem. Biol. 28, 4–13 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Belkina, A. C. & Denis, G. V. BET ___domain co-regulators in obesity, inflammation and cancer. Nat. Rev. Cancer 12, 465–477 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Winter, G. E. et al. BET bromodomain proteins function as master transcription elongation factors independent of CDK9 recruitment. Mol. Cell 67, 5–18 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Young, P., Deveraux, Q., Beal, R. E., Pickart, C. M. & Rechsteiner, M. Characterization of two polyubiquitin binding sites in the 26 S protease subunit 5a. J. Biol. Chem. 273, 5461–5467 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Hines, J., Lartigue, S., Dong, H., Qian, Y. & Crews, C. M. MDM2-recruiting PROTAC offers superior, synergistic anti-proliferative activity via simultaneous degradation of BRD4 and stabilization of p53. Cancer Res. 79, 251–262 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Zengerle, M., Chan, K.-H. & Ciulli, A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol. 10, 1770–1777 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Simpson, L. M. et al. Inducible degradation of target proteins through a tractable affinity-directed protein missile system. Cell Chem. Biol. 27, 1164–1180 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee, Y.-S. et al. The cytoplasmic deacetylase HDAC6 is required for efficient oncogenic tumorigenesis. Cancer Res. 68, 7561–7569 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Haberland, M., Montgomery, R. L. & Olson, E. N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 10, 32–42 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bradner, J. E. et al. Chemical phylogenetics of histone deacetylases. Nat. Chem. Biol. 6, 238–243 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hanswillemenke, A. et al. Profiling the interactome of oligonucleotide drugs by proximity biotinylation. Nat. Chem. Biol. 20, 555–565 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ohana, R. F. et al. Deciphering the cellular targets of bioactive compounds using a chloroalkane capture tag. ACS Chem. Biol. 10, 2316–2324 (2015).

    Article  PubMed  Google Scholar 

  63. Hu, Y. et al. BRD4 inhibitor inhibits colorectal cancer growth and metastasis. Int. J. Mol. Sci. 16, 1928–1948 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li, L. et al. Histone deacetylase inhibitor sodium butyrate suppresses DNA double strand break repair induced by etoposide more effectively in MCF-7 cells than in HEK293 cells. BMC Biochem. 16, 2 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tran, A. D.-A. et al. HDAC6 deacetylation of tubulin modulates dynamics of cellular adhesions. J. Cell Sci. 120, 1469–1479 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Perera, R. M. & Zoncu, R. The lysosome as a regulatory hub. Annu. Rev. Cell Dev. Biol. 32, 223–253 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Miao, Y. et al. Bispecific aptamer chimeras enable targeted protein degradation on cell membranes. Angew. Chem. Int. Ed. 60, 11267–11271 (2021).

    Article  CAS  Google Scholar 

  68. Cotton, A. D., Nguyen, D. P., Gramespacher, J. A., Seiple, I. B. & Wells, J. A. Development of antibody-based PROTACs for the degradation of the cell-surface immune checkpoint protein PD-L1. J. Am. Chem. Soc. 143, 593–598 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hsia, O. et al. Targeted protein degradation via intramolecular bivalent glues. Nature 627, 204–211 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bao, J. et al. Discovery of novel pdeδ autophagic degraders: a case study of autophagy-tethering compound (ATTEC). ACS Med. Chem. Lett. 15, 29–35 (2024).

    Article  CAS  PubMed  Google Scholar 

  71. Wang, L., Klionsky, D. J. & Shen, H.-M. The emerging mechanisms and functions of microautophagy. Nat. Rev. Mol. Cell Biol. 24, 186–203 (2023).

    Article  CAS  PubMed  Google Scholar 

  72. Nabet, B. et al. Rapid and direct control of target protein levels with VHL-recruiting dTAG molecules. Nat. Commun. 11, 4687 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang, W. W. et al. Targeted protein acetylation in cells using heterobifunctional molecules. J. Am. Chem. Soc. 143, 16700–16708 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Siriwardena, S. U. et al. Phosphorylation-inducing chimeric small molecules. J. Am. Chem. Soc. 142, 14052–14057 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Hines, J., Gough, J. D., Corson, T. W. & Crews, C. M. Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoPROTACs. Proc. Natl Acad. Sci. USA 110, 8942–8947 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wu, Q., Schapira, M., Arrowsmith, C. H. & Barsyte-Lovejoy, D. Protein arginine methylation: from enigmatic functions to therapeutic targeting. Nat. Rev. Drug Discov. 20, 509–530 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Albrecht Lab for their support in this research and thank J. Leonard for assistance in modeling and conceptualization. The research was supported in part by Ono Pharmaceuticals (award to L.V.A.) and we thank the Cystinosis Research Foundation (CRF) for funding. We would like to thank the UCI Mass Spectrometry Facility and B. Katz for assistance with the collection and analysis of protein MS data. Data were collected on a Waters Acquity UPLC Xevo G2-XS QTOF system (NIH supplemental funding support received by J.S. Nowick (National Institute of General Medical Sciences (NIGMS) GM097562), V.Y. Duong (NIH GM105938) and O. Cinquin (NIGMS GM102635)). We would like to thank C. Yu and L. Huang at the UCI High-end Mass Spectrometry Facility for their help and service in MS data acquisition and analysis. We would also like to thank the Comprehensive Liver Research Center at University of California, Los Angeles (UCLA).

Author information

Authors and Affiliations

Authors

Contributions

L.V.A., L.J.S. and C.N.F conceived the study. L.V.A. and L.J.S. designed the experiments. L.J.S., C.N.F., M.C., S.T.N., R.L.W., M.F.K. and K.S. contributed to cell biology experiments. C.A.L., J.O., S.R.L. and D.J.T. contributed to compound synthesis. C.F. and J.Z. contributed to CRISPR cell line construction. L.V.A. and L.J.S. analyzed the data. L.V.A. and L.J.S. wrote the manuscript.

Corresponding author

Correspondence to Lauren V. Albrecht.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Cheryl Arrowsmith, Yong Tae Kwon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Expression and degradation of GSK3β by MrTAC.

a, Schematic of types of MrTAC compounds to mediate proximity between a protein target and a protein arginine methyltransferase (PRMT). Indirect MrTAC dimerizes HaloTag and SNAP-tag fusion proteins that are encoded alongside the PRMT and target. b, Representative immunofluorescence of HEK293 cells stably expressing GSK3β-SNAP-mCherry-FLAG (red) and Halo-PRMT1-Myc (green). c, Immunoblot analysis of GSK3β levels (left) and PRMT1 levels (endogenous, Halo-tagged monomer and Halo-tagged in MrTAC complex; right) during either a 24- or 3-h MrTACHaXS8 dose curve in stably expressing HEK293s. d, Confocal microscopy of HEK293T cells either non-transfected or transfected with GSK3β-SNAP-FLAG (red) and Halo-PRMT1-Myc (green; left). Quantification (right) shows proportion of cells expressing both constructs or just one construct relative to the total number of transfected cells over three fields of view. ****P < 0.0001, *P < 0.0217 by one-sided t-test relative to 0% (n = 3 fields of view). e, Immunoblot analysis of endogenous GSK3β and PRMT1, overexpressed GSK3β-SNAP and Halo-PRMT1 and GSK3β-MrTAC-PRMT1 complexes (0.5 µM, 1 h). f, Immunoblot analysis of HEK293T cells transiently expressing Halo-PRMT1 and GSK3β-SNAP in a 24 (left), 3 (middle) or 9-h (right) MrTAC dose curve (top). Bottom graphs show total levels of GSK3β relative to 0 µM. g, Immunoblot analysis of HeLa cells expressing Halo-PRMT1 and GSK3β-SNAP in a 3-h MrTAC dose curve (top). Bottom graph shows total levels of GSK3β relative to 0 µM. Scale bars are 10 µm. Immunoblots are representative of three independent experiments. Data are represented as means ± SEM.

Source data

Extended Data Fig. 2 VPS4-mediated GSK3β sequestration during MrTAC treatment.

a, Live-cell confocal microscopy of GSK3β-SNAP-GFP in HeLa cells incubated with Lysotracker over 60 min with 0.5 µM MrTACHaXS8. Image was captured every 10 min. Arrows note colocalization. b, Colocalization of GSK3β-SNAP-FLAG with lysosomal-associated membrane protein (LAMP-1) after MrTACHaXS8 treatment in stable HEK293 cells (0.5 µM, 3 h, mean colocalizing structures over n = 39DMSO and 54MrTAC cells; left) or transiently expressing HEK293T cells (10 µM, 3 h, mean colocalizing structures over n = 24DMSO and 45MrTAC cells; right). Arrows mark colocalization. For either experiment, graphs depict the number of colocalized GSK3β/LAMP-1 puncta within each cell. ****P < 0.0001 and ***P < 0.0010 by unpaired two-sided t-tests. c, Colocalization of HEK293T cells expressing GSK3β-SNAP-FLAG (red) with either wild-type (WT) or dominant negative (DN) VPS4-GFP after MrTACHaXS8 treatment (10 µM, 1 h). d, Colocalization of HeLa cells expressing GSK3β-SNAP-FLAG (red) with either wild-type (WT) or dominant negative (DN) VPS4-GFP after MrTACHaXS8 treatment (0.5 µM, 2 h). e, Immunoblot analysis of target protein levels of siRNA-mediated knockdown of Lamp2a, Atg7 or Vps4a (100 nM) collected on day of experiment completion (n = 3 experiments). Scale bars are 10 µm. Data are represented as means ± SEM.

Source data

Extended Data Fig. 3 Methylation of GSK3β by PRMT1.

a, Mass spectrometry of in vitro methylated GSK3β samples in presence (bottom) or absence (top) of PRMT1 and the associated protein coverage by LC–MS QTOF (left). Associated coverage map of GSK3β by LC–MS QTOF (right). b, Mass spectrometry of methylated GSK3β following FLAG immunoprecipitation of MrTAC-treated HEK293 cells that transiently express PRMT1-Halo and GSK3β-SNAP-FLAG (10 µM, 2 h with 400 nM bafilomycin and 10 µM MG132; left). Associated coverage maps of GSK3β and recruited PRMT1 by LC–MS QTOF (right).

Extended Data Fig. 4 MrTAC degradation of SNAP-tagged proteins reshapes cell signaling.

a, Proliferation following MrTACHaXS8 treatment (0.5 µM) in HeLa cells expressing either Halo-PRMT1/GSK3β-SNAP or Halo-empty/SNAP-empty over seven days (n = 4 experiments; left). **P < 0.0051 drug effect and **PD7 < 0.0010 by two-way ANOVA with Bonferroni’s multiple comparisons. Proliferation of non-transfected HeLa cells treated with MrTACHaXS8 at indicated times (n = 8 experiments), ns by unpaired two-sided t-tests (right). b, Immunoblot analysis of PRMT1 protein levels (Halo-tagged and endogenous) in MrTACHaXS8-treated HEK293 cells expressing CRISPR-integrated PRMT1-Halo/GSK3β-SNAP over 3 days (n = 3 experiments). c, Confocal microscopy of c-MYC-SNAP-FLAG colocalization with asymmetric dimethylarginine (ADMA) antibody after MrTAC treatment (1.5 h, 10 µM; left). Thick outlines mark low colocalization, and arrows mark high colocalization. Scale bar is 5 µm. Bars (right) show average Pearson correlation coefficient between FLAG/ADMA channels across all cells marked with DAPI (n = 11 fields of view). ***P < 0.0009 by two-sided unpaired t-test. d, Confocal microscopy of c-MYC-SNAP-FLAG colocalization with lysosomal-associated membrane protein (LAMP-1) in MrTAC-treated cells (1 h, 10 µM; left). Arrows indicate colocalization, scale bar is 10 µm. Bars (right) show average number of colocalized structures within a cell over 9 fields of view as normalized to DMSO condition. **P < 0.0046 by two-sided unpaired t-test. e, Immunoblot analysis of c-MYC-SNAP levels in cells treated with MrTAC (10 µM) at indicated times with cycloheximide (10 µM). Cells were treated in the presence of bafilomycin (100 nM) or MG132 (5 µM; n = 2 experiments). Data are represented as means ± SEM.

Source data

Extended Data Fig. 5 Degradation of endogenous targets.

a, Modeling of MrTACJQ1. MrTACJQ1 bound to BRD4 bromodomain 1 (BD1; PDB: 3MXF) and HaloTag (PDB: 6U32). Pink arrow shows direction of PRMT1 fusion (left). BRD4 BD1 binding to MrTACJQ1 compared against JQ1 ligand (gold; middle). HaloTag binding to MrTACJQ1 compared against tetramethylrhodamine-HaloTag (TMR-HT) ligand (gold; right). b, Quantification of immunoblot in Fig 5b by one-way ANOVA with Bonferroni’s multiple comparisons, *P0.1 < 0.0169, **P1 < 0.0076, **P10 < 0.0069. c, Immunoblot analysis of PRMT1-Halo levels through a 4-h MrTACJQ1 treatment (n = 3). d, Quantification of immunoblot in Fig 5f by one-way ANOVA with Bonferroni’s multiple comparisons, *P < 0.0221 (nMrTAC = 4, nControl = 3). e, Immunoblot analysis of PRMT1 levels through a 4-h MrTACSAHA treatment in HEK293s stably expressing PRMT1-Halo (n = 3; left). Right quantifies levels of total PRMT1 (Halo-tagged and monomeric, uncropped blot in source data) relative to 0 µM; ns by one-way ANOVA with Bonferroni’s multiple comparisons. f, Immunofluorescence of PRMT1-Halo in stably expressing HEK293 cells following a 4-h MrTACSAHA treatment with a lysosome-associated membrane protein 1 (LAMP-1) costain; scale bar is 5 µm. g, Analysis of HDAC6 levels through a 4-h MrTACSAHA treatment in HeLa cells transiently expressing PRMT1-Halo by immunoblot (n = 3; left) and immunofluorescence (n = 200 cells; middle); graph shows HDAC6 intensity over total cells marked by DAPI. ****P < 0.0001 by unpaired two-sided t-test (right). h, Immunoblot analysis of HDAC6 levels with MrTACSAHA (1 µM, 4 h) in HEK293s stably expressing PRMT1-Halo co-treated with lysosome inhibitor bafilomycin (400 nM, 2 h pre-treatment) or proteasome inhibitor MG132 (10 µM; n = 3; left). Right, total levels of HDAC6 in +MrTAC cells relative to either group’s -MrTAC condition. *P < 0.0445 by unpaired two-sided t-test. Immunoblots are representative of at least three independent experiments. Data are represented as means ± SEM.

Source data

Extended Data Fig. 6 Effect of endogenous MrTAC degradation on cell function.

a, Representative cell density of HEK293 cells stably expressing PRMT1-HaloTag following 6 days of 1 µM MrTACJQ1 or DMSO vehicle (n = 3 experiments); scale bar is 500 µm. b, Immunoblot analysis of Halo-tagged and endogenous PRMT1 levels through a 3-day MrTACSAHA treatment at 1 µM in HEK293s stably expressing PRMT1-Halo (left; n = 3 experiments). Middle and right quantify total levels of PRMT1-Halo and endogenous PRMT1, respectively, as normalized to the DMSO condition, ns by unpaired two-sided t-test. All quantified values are means ± SEM.

Source data

Supplementary information

Supplementary Information

Supplementary Note.

Reporting Summary

Supplementary Video 1

Live-cell confocal microscopy of GSK3β-SNAP-GFP degradation in HeLa cells over 60 min with 0.1 µM MrTAC. Image was captured every 5 min. Scale bar is 5 µm.

Supplementary Video 2

Live-cell confocal microscopy of GSK3β-SNAP-mCherry degradation in stably expressing HEK293 cells incubated with LysoTracker over 40 min with 0.1 µM MrTAC. Image was captured every 6 min. Scale bar is 10 µm.

Supplementary Video 3

Live-cell confocal microscopy of GSK3β-SNAP-GFP degradation in HeLa cells incubated with LysoTracker over 60 min with 0.5 µM MrTAC. Image was captured every 10 min. Scale bar is 10 µm, arrows note colocalization.

Source data

Source Data Fig. 1

Unprocessed western blots.

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Unprocessed western blots.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Unprocessed western blots.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Unprocessed western blots.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Unprocessed western blots.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Unprocessed western blots.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 1

Unprocessed western blots.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Unprocessed western blots.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 4

Unprocessed western blots.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Unprocessed western blots.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Unprocessed western blots.

Source Data Extended Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seabrook, L.J., Franco, C.N., Loy, C.A. et al. Methylarginine targeting chimeras for lysosomal degradation of intracellular proteins. Nat Chem Biol 20, 1566–1576 (2024). https://doi.org/10.1038/s41589-024-01741-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-024-01741-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing