Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Orthogonal RNA replication enables directed evolution and Darwinian adaptation in mammalian cells

Abstract

Directed evolution in mammalian cells offers a powerful approach for advancing synthetic biology applications. However, existing mammalian-based directed evolution methods face substantial bottlenecks, including host genome interference, small library size and uncontrolled mutagenesis. Here we engineered an orthogonal alphaviral RNA replication system to evolve RNA-based devices, enabling RNA replicase-assisted continuous evolution (REPLACE) in proliferating mammalian cells. This system generates a large, continuously diversified library of replicative RNAs through replicase-limited mode of replication and inducible mutagenesis. Using REPLACE, we engineered fluorescent proteins and transcription factors. Notably, cells equipped with REPLACE can undergo Darwinian adaptation, allowing them to evolve in response to both cell-extrinsic and cell-intrinsic challenges. Collectively, this work establishes a powerful platform for advancing mammalian synthetic biology and cell engineering applications through directed evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Engineering and characterization of replicative RNAs with enhanced host compatibility and stability in mammalian cells.
Fig. 2: Chemically inducible and dose-dependent RNA mutagenesis.
Fig. 3: REPLACE enables the engineering of biomolecules by directed evolution in mammalian cells.
Fig. 4: REPLACE allows mammalian cells to adapt to cell-extrinsic challenge.
Fig. 5: REPLACE facilitates evolutionary adaptation of mammalian cells to dominant-negative inhibition.

Similar content being viewed by others

Data availability

Raw NGS and PacBio sequencing data and corresponding processed data are available from the NCBI Gene Expression Omnibus (GEO) under accession number GSE235343. The processed Sanger Sequencing data for identified mutants are available in Supplementary Data 1. The structural data for TetR, PadR and MEK1 were obtained from the AlphaFold Protein Structure Database (TetR: AF-A0A829R067-F1-model_v4.pdb; PadR: AF-P94443-F1-model_v4.pdb; MEK1: AF-A4QPA9-F1-model_v4.pdb). The structure of the PadR small-molecule ligand ferulic acid and the structure of MEK1 allosteric inhibitor cobimetinib were sourced from the PDB under accession codes 5X14 and 7JUS. Sequences for plasmids and primers in this work are included in the Supplementary Information. Key plasmids can be obtained from WeKwikGene (https://wekwikgene.wllsb.edu.cn/, identifiers 0000673–0000676), a nonprofit plasmid repository. Source data are provided with this paper.

Code availability

An example Python script for analyzing sequencing data is included in the Supplementary Information.

References

  1. Lienert, F., Lohmueller, J. J., Garg, A. & Silver, P. A. Synthetic biology in mammalian cells: next generation research tools and therapeutics. Nat. Rev. Mol. Cell Biol. 15, 95–107 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Church, G. M., Elowitz, M. B., Smolke, C. D., Voigt, C. A. & Weiss, R. Realizing the potential of synthetic biology. Nat. Rev. Mol. Cell Biol. 15, 289–294 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tan, X., Letendre, J. H., Collins, J. J. & Wong, W. W. Synthetic biology in the clinic: engineering vaccines, diagnostics, and therapeutics. Cell 184, 881–898 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Weber, W. & Fussenegger, M. Emerging biomedical applications of synthetic biology. Nat. Rev. Genet. 13, 21–35 (2012).

    Article  CAS  Google Scholar 

  5. Lim, W. A. & June, C. H. The principles of engineering immune cells to treat cancer. Cell 168, 724–740 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sedlmayer, F., Aubel, D. & Fussenegger, M. Synthetic gene circuits for the detection, elimination and prevention of disease. Nat. Biomed. Eng. 2, 399–415 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Ruder, W. C., Lu, T. & Collins, J. J. Synthetic biology moving into the clinic. Science 333, 1248–1252 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Purnick, P. E. M. & Weiss, R. The second wave of synthetic biology: from modules to systems. Nat. Rev. Mol. Cell Biol. 10, 410–422 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Gallup, O., Ming, H. & Ellis, T. Ten future challenges for synthetic biology. Eng. Biol. 5, 51–59 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Castle, S. D., Grierson, C. S. & Gorochowski, T. E. Towards an engineering theory of evolution. Nat. Commun. 12, 3326 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kheir Gouda, M., Manhart, M. & Balázsi, G. Evolutionary regain of lost gene circuit function. Proc. Natl Acad. Sci. USA 116, 25162–25171 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Simon, A. J., d’Oelsnitz, S. & Ellington, A. D. Synthetic evolution. Nat. Biotechnol. 37, 730–743 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Lezia, A., Csicsery, N. & Hasty, J. Design, mutate, screen: multiplexed creation and arrayed screening of synchronized genetic clocks. Cell Syst. 13, 365–375 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Cobb, R. E., Sun, N. & Zhao, H. Directed evolution as a powerful synthetic biology tool. Methods 60, 81–90 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Haseltine, E. L. & Arnold, F. H. Synthetic gene circuits: design with directed evolution. Annu. Rev. Biophys. Biomol. Struct. 36, 1–19 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Yokobayashi, Y., Weiss, R. & Arnold, F. H. Directed evolution of a genetic circuit. Proc. Natl Acad. Sci. USA 99, 16587–16591 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Morrison, M. S., Podracky, C. J. & Liu, D. R. The developing toolkit of continuous directed evolution. Nat. Chem. Biol. 16, 610–619 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Hendel, S. J. & Shoulders, M. D. Directed evolution in mammalian cells. Nat. Methods 18, 346–357 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, Y. et al. Directed evolution: methodologies and applications. Chem. Rev. 121, 12384–12444 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Molina, R. S. et al. In vivo hypermutation and continuous evolution. Nat. Rev. Methods Prim. 2, 1–22 (2022).

    Google Scholar 

  21. Tian, R. et al. Establishing a synthetic orthogonal replication system enables accelerated evolution in E. coli. Science 383, 421–426 (2024).

    Article  CAS  PubMed  Google Scholar 

  22. Ravikumar, A., Arzumanyan, G. A., Obadi, M. K. A., Javanpour, A. A. & Liu, C. C. Scalable, continuous evolution of genes at mutation rates above genomic error thresholds. Cell 175, 1946–1957 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Majors, B. S., Chiang, G. G. & Betenbaugh, M. J. Protein and genome evolution in mammalian cells for biotechnology applications. Mol. Biotechnol. 42, 216–223 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Azam, M., Latek, R. R. & Daley, G. Q. Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell 112, 831–843 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, L., Jackson, W. C., Steinbach, P. A. & Tsien, R. Y. Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc. Natl Acad. Sci. USA 101, 16745–16749 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peck, S. H., Chen, I. & Liu, D. R. Directed evolution of a small-molecule-triggered intein with improved splicing properties in mammalian cells. Chem. Biol. 18, 619–630 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hess, G. T. et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat. Methods 13, 1036–1042 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ma, Y. et al. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat. Methods 13, 1029–1035 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Berman, C. M. et al. An adaptable platform for directed evolution in human cells. J. Am. Chem. Soc. 140, 18093–18103 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Piatkevich, K. D. et al. A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. Nat. Chem. Biol. 14, 352–360 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Das, A. T. et al. Viral evolution as a tool to improve the tetracycline-regulated gene expression system. J. Biol. Chem. 279, 18776–18782 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. English, J. G. et al. VEGAS as a platform for facile directed evolution in mammalian cells. Cell 178, 748–761 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, H. et al. Efficient, continuous mutagenesis in human cells using a pseudo-random DNA editor. Nat. Biotechnol. 38, 165–168 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Sahin, U., Karikó, K. & Türeci, Ö. mRNA-based therapeutics—developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 23, 265–280 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Khan, K. H. Gene expression in mammalian cells and its applications. Adv. Pharm. Bull. 3, 257–263 (2013).

    PubMed  PubMed Central  Google Scholar 

  37. Strauss, J. H. & Strauss, E. G. The alphaviruses: gene expression, replication, and evolution. Microbiol. Rev. 58, 491–562 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Frolov, I. et al. Alphavirus-based expression vectors: strategies and applications. Proc. Natl Acad. Sci. USA 93, 11371–11377 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tian, L. et al. RNA-dependent RNA polymerase (RdRp) inhibitors: the current landscape and repurposing for the COVID-19 pandemic. Eur. J. Med. Chem. 213, 113201 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xiong, C. et al. Sindbis virus: an efficient, broad host range vector for gene expression in animal cells. Science 243, 1188–1191 (1989).

    Article  CAS  PubMed  Google Scholar 

  41. Wolff, J. A. et al. Direct gene transfer into mouse muscle in vivo. Science 247, 1465–1468 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Zhou, X. et al. Self-replicating Semliki forest virus RNA as recombinant vaccine. Vaccine 12, 1510–1514 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Wroblewska, L. et al. Mammalian synthetic circuits with RNA binding proteins for RNA-only delivery. Nat. Biotechnol. 33, 839–841 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jose, J., Taylor, A. B. & Kuhn, R. J. Spatial and temporal analysis of alphavirus replication and assembly in mammalian and mosquito cells. mBio 8, e02294-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shirako, Y. & Strauss, J. H. Cleavage between nsP1 and nsP2 initiates the processing pathway of Sindbis virus nonstructural polyprotein P123. Virology 177, 54–64 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Frolov, I. et al. Selection of RNA replicons capable of persistent noncytopathic replication in mammalian cells. J. Virol. 73, 3854–3865 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guo, J.-T., Zhu, Q. & Seeger, C. Cytopathic and noncytopathic interferon responses in cells expressing hepatitis C virus subgenomic replicons. J. Virol. 77, 10769–10779 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Urakova, N. et al. β-d-N4-hydroxycytidine is a potent anti-alphavirus compound that induces a high level of mutations in the viral genome. J. Virol. 92, e01965-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Delang, L., Abdelnabi, R. & Neyts, J. Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antivir. Res. 153, 85–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Sheahan, T. P. et al. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci. Transl. Med. 12, eabb5883 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Kabinger, F. et al. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat. Struct. Mol. Biol. 28, 740–746 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Slotkin, W. & Nishikura, K. Adenosine-to-inosine RNA editing and human disease. Genome Med. 5, 105 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Heim, R., Prasher, D. C. & Tsien, R. Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl Acad. Sci. USA 91, 12501–12504 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sawano, A. & Miyawaki, A. Directed evolution of green fluorescent protein by a new versatile PCR strategy for site-directed and semi-random mutagenesis. Nucleic Acids Res. 28, e78 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stoltzfus, C. R. et al. Two-photon directed evolution of green fluorescent proteins. Sci. Rep. 5, 11968 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hirano, M. et al. A highly photostable and bright green fluorescent protein. Nat. Biotechnol. 40, 1132–1142 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, Y. et al. A versatile genetic control system in mammalian cells and mice responsive to clinically licensed sodium ferulate. Sci. Adv. 6, eabb9484 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Park, S. C., Kwak, Y. M., Song, W. S., Hong, M. & Yoon, S. Structural basis of effector and operator recognition by the phenolic acid-responsive transcriptional regulator PadR. Nucleic Acids Res. 45, 13080–13093 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Emery, C. M. et al. MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proc. Natl Acad. Sci. USA 106, 20411–20416 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Khan, Z. M. et al. Structural basis for the action of the drug trametinib at KSR-bound MEK. Nature 588, 509–514 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Roskoski, R. Classification of small molecule protein kinase inhibitors based upon the structures of their drug–enzyme complexes. Pharmacol. Res. 103, 26–48 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Caunt, C. J., Sale, M. J., Smith, P. D. & Cook, S. J. MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nat. Rev. Cancer 15, 577–592 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Delaney, A. M., Printen, J. A., Chen, H., Fauman, E. B. & Dudley, D. T. Identification of a novel mitogen-activated protein kinase kinase activation ___domain recognized by the inhibitor PD 184352. Mol. Cell. Biol. 22, 7593–7602 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gao, Y. et al. V211D mutation in MEK1 causes resistance to MEK inhibitors in colon cancer. Cancer Discov. 9, 1182–1191 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Adjei, A. A. Blocking oncogenic Ras signaling for cancer therapy. J. Natl Cancer Inst. 93, 1062–1074 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Stewart, S. & Guan, K.-L. The dominant negative Ras mutant, N17Ras, can inhibit signaling independently of blocking ras activation. J. Biol. Chem. 275, 8854–8862 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Treisman, R. The serum response element. Trends Biochem. Sci. 17, 423–426 (1992).

    Article  CAS  PubMed  Google Scholar 

  68. Zhang, B., Zhang, Y., Wang, Z. & Zheng, Y. The role of Mg2+ cofactor in the guanine nucleotide exchange and GTP hydrolysis reactions of Rho family GTP-binding proteins. J. Biol. Chem. 275, 25299–25307 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Feig, L. A. Dominant inhibitory Ras mutants: tools for elucidating ras function. In GTPases in Biology I (eds Dickey, B. F. & Birnbaumer, L.) (Springer, 1993).

  70. Kwan, A. K., Piazza, G. A., Keeton, A. B. & Leite, C. A. The path to the clinic: a comprehensive review on direct KRASG12C inhibitors. J. Exp. Clin. Cancer Res. 41, 27 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Spoerner, M. et al. Conformational states of human Rat sarcoma (Ras) protein complexed with its natural ligand GTP and their role for effector interaction and GTP hydrolysis. J. Biol. Chem. 285, 39768–39778 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pantsar, T. et al. Assessment of mutation probabilities of KRAS G12 missense mutants and their long-timescale dynamics by atomistic molecular simulations and Markov state modeling. PLoS Comput. Biol. 14, e1006458 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Harvey, W. T. et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19, 409–424 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sanderson, T. et al. A molnupiravir-associated mutational signature in global SARS-CoV-2 genomes. Nature 623, 594–600 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Denes, C. E. et al. The VEGAS platform is unsuitable for mammalian directed evolution. ACS Synth. Biol. 11, 3544–3549 (2022).

    Article  CAS  PubMed  Google Scholar 

  76. Liljeström, P., Lusa, S., Huylebroeck, D. & Garoff, H. In vitro mutagenesis of a full-length cDNA clone of Semliki forest virus: the small 6,000-molecular-weight membrane protein modulates virus release. J. Virol. 65, 4107–4113 (1991).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Agapov, E. V. et al. Noncytopathic Sindbis virus RNA vectors for heterologous gene expression. Proc. Natl Acad. Sci. USA 95, 12989–12994 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Ye (East China Normal University) for his gift of plasmids and members of the Y.L. lab, particularly S. Fan, J. Wu, Z. Gao, P. Ma, Y. Liu and B. Chen, for help and discussions. We thank the Flow Cytometry Core at the National Center for Protein Sciences at Peking University, particularly H. Yang and X. Zhang, for their technical help. We thank the Quantitative Imaging Facility at the Center for Quantitative Biology at Peking University for equipment support and the High-Performance Computing Platform of the Peking-Tsinghua Center for Life Sciences for computational support. Y.L. acknowledges grants from the National Key R&D Program of China (2020YFA0906900 and 2018YFA0900703), the National Natural Science Foundation of China (T2325002, T2321001 and 32088101) and the Key Technology R&D Program of Sichuan (2024YFHZ0064).

Author information

Authors and Affiliations

Authors

Contributions

L.M. and Y.L. conceptualized and designed the study. L.M. performed all the experiments and most of the analysis, with input on data interpretation and analysis from Y.L. L.M. and Y.L. wrote the manuscript.

Corresponding author

Correspondence to Yihan Lin.

Ethics declarations

Competing interests

L.M. and Y.L. have been granted a patent related to the tools developed in this work (patent no. CN116064597B).

Peer review

Peer review information

Nature Chemical Biology thanks G. Neely and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–32, notes 1–9 and Tables 1–4.

Reporting Summary

Supplementary Data 1

Sanger sequencing data of individual variants from different directed evolution campaigns.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Lin, Y. Orthogonal RNA replication enables directed evolution and Darwinian adaptation in mammalian cells. Nat Chem Biol 21, 451–463 (2025). https://doi.org/10.1038/s41589-024-01783-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-024-01783-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing