Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A class of benzofuranoindoline-bearing heptacyclic fungal RiPPs with anticancer activities

Abstract

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a promising source of new pharmaceuticals, yet the therapeutic potential of fungal RiPPs remains largely underexplored. Here we report asperigimycins as a distinct class of fungal RiPPs, featuring a unique heptacyclic scaffold consisting of a benzofuranoindoline core and three additional macrocycles, primarily assembled by six distinct fungi-specific DUF3328 oxidases. Inspired by the enhancement of anticancer activity through the N-terminal pyroglutamate in naturally occurring asperigimycins C and D, we chemically modify the inactive asperigimycin B with a series of lipid substitutions at its N-terminus. A derivative with a C-11 linear fatty acid, 2-L6, achieves nanomolar anticancer potency comparable to that of clinically approved antileukemia drugs. High-throughput CRISPR screening identifies the SLC46A3 transporter as a critical factor mediating 2-L6 cellular uptake into human cells. Our findings highlight the promise of engineering asperigimycins as therapeutic leads for cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Discovery and engineering of asperigimycins.
Fig. 2: Characterization of asperigimycins biosynthesis.
Fig. 3: The N-terminal modification of asperigimycins to enhance their anticancer potency.
Fig. 4: CRISPR screening reveals SLC46A3 serves as the transporter of asperigimycin derivative.

Similar content being viewed by others

Data availability

All data are available in the Article or its Supplementary Information. Coordinates and associated structure factors of ApgG have been deposited in the PDB database (PDB ID 8VPL). High-throughput DNA sequencing data in this study have been deposited at the NCBI Sequence Read Archive (PRJNA1113705). The molecular network can be found at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=c896cd91d51d4bf7bfb45484ada8d04f. All primers used in this Article are listed in Supplementary Table 3. Data are available from the corresponding authors upon request. Source data are provided with this paper.

References

  1. Bharate, S. B. & Lindsley, C. W. Call for papers: natural products driven medicinal chemistry. J. Med. Chem. 66, 16455–16456 (2023).

    Article  CAS  Google Scholar 

  2. Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 83, 770–803 (2020).

    Article  PubMed  CAS  Google Scholar 

  3. Fralish, Z., Chen, A., Khan, S., Zhou, P. & Reker, D. The landscape of small-molecule prodrugs. Nat. Rev. Drug Discov. 23, 365–380 (2024).

    Article  PubMed  CAS  Google Scholar 

  4. Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Montalbán-López, M. et al. New developments in RiPP discovery, enzymology and engineering. Nat. Prod. Rep. 38, 130–239 (2021).

    Article  PubMed  Google Scholar 

  6. Scherlach, K. & Hertweck, C. Mining and unearthing hidden biosynthetic potential. Nat. Commun. 12, 3864 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ford, R. E., Foster, G. D. & Bailey, A. M. Exploring fungal RiPPs from the perspective of chemical ecology. Fungal Biol. Biotechnol. 9, 12 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Greco, C., Keller, N. P. & Rokas, A. Unearthing fungal chemodiversity and prospects for drug discovery. Curr. Opin. Microbiol. 51, 22–29 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kessler, S. C. & Chooi, Y.-H. Out for a RiPP: challenges and advances in genome mining of ribosomal peptides from fungi. Nat. Prod. Rep. 39, 222–230 (2022).

    Article  PubMed  CAS  Google Scholar 

  10. Van Der Velden, N. S. et al. Autocatalytic backbone N-methylation in a family of ribosomal peptide natural products. Nat. Chem. Biol. 13, 833–835 (2017).

    Article  PubMed  Google Scholar 

  11. Nagano, N. et al. Class of cyclic ribosomal peptide synthetic genes in filamentous fungi. Fungal Genet. Biol. 86, 58–70 (2016).

    Article  PubMed  CAS  Google Scholar 

  12. Vignolle, G. A., Mach, R. L., Mach-Aigner, A. R. & Derntl, C. Novel approach in whole genome mining and transcriptome analysis reveal conserved RiPPs in Trichoderma spp. BMC Genomics 21, 258 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. The International Natural Product Sciences Taskforce,Atanasov, A. G., Zotchev, S. B., Dirsch, V. M. & Supuran, C. T. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 20, 200–216 (2021).

    Article  Google Scholar 

  14. Vogt, E., Sonderegger, L., Chen, Y.-Y., Segessemann, T. & Künzler, M. Structural and functional analysis of peptides derived from KEX2-processed repeat proteins in Agaricomycetes using reverse genetics and peptidomics. Microbiol. Spectr. 10, e02021–e02022 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yoshimi, A. et al. Expression of ustR and the Golgi protease KexB are required for ustiloxin B biosynthesis in Aspergillus oryzae. AMB Express 6, 9 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Aron, A. T. et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 15, 1954–1991 (2020).

    Article  PubMed  CAS  Google Scholar 

  17. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Payne, G. A. et al. Whole genome comparison of Aspergillus flavus and A. oryzae. Med. Mycol. 44, 9–11 (2006).

    Article  Google Scholar 

  19. Blin, K. et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 51, W46–W50 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Catlett, N. L., Lee, B.-N., Yoder, O. C. & Turgeon, B. G. Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genet. Rep. 50, 9–11 (2003).

    Article  Google Scholar 

  21. Kersten, R. D. & Weng, J.-K. Gene-guided discovery and engineering of branched cyclic peptides in plants. Proc. Natl Acad. Sci. USA 115, E10961–E10969 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Grimblat, N., Zanardi, M. M. & Sarotti, A. M. Beyond DP4: an improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J. Org. Chem. 80, 12526–12534 (2015).

    Article  PubMed  CAS  Google Scholar 

  23. Liu, M. et al. Enzymatic benzofuranoindoline formation in the biosynthesis of the strained bridgehead bicyclic dipeptide (+)‐azonazine A. Angew. Chem. Int. Ed. 62, e202311266 (2023).

    Article  CAS  Google Scholar 

  24. Li, J., Burgett, A. W. G., Esser, L., Amezcua, C. & Harran, P. G. Total synthesis of nominal diazonamides—part 2: on the true structure and origin of natural isolates. Angew. Chem. 113, 4906–4909 (2001).

    Article  Google Scholar 

  25. Ye, Y. et al. Unveiling the biosynthetic pathway of the ribosomally synthesized and post‐translationally modified peptide ustiloxin B in filamentous fungi. Angew. Chem. Int. Ed. 55, 8072–8075 (2016).

    Article  CAS  Google Scholar 

  26. Ye, Y. et al. Heterologous production of asperipin-2a: proposal for sequential oxidative macrocyclization by a fungi-specific DUF3328 oxidase. Org. Biomol. Chem. 17, 39–43 (2019).

    Article  CAS  Google Scholar 

  27. Huang, K.-F., Liu, Y.-L., Cheng, W.-J., Ko, T.-P. & Wang, A. H.-J. Crystal structures of human glutaminyl cyclase, an enzyme responsible for protein N-terminal pyroglutamate formation. Proc. Natl Acad. Sci. USA 102, 13117–13122 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Sogahata, K. et al. Biosynthetic studies of phomopsins unveil posttranslational installation of dehydroamino acids by UstYa family proteins. Angew. Chem. Int. Ed. 60, 25729–25734 (2021).

    Article  CAS  Google Scholar 

  29. Jiang, Y. et al. Biosynthesis of cyclochlorotine: identification of the genes involved in oxidative transformations and intramolecular O,N-transacylation. Org. Lett. 23, 2616–2620 (2021).

    Article  PubMed  CAS  Google Scholar 

  30. Chiang, C.-Y. et al. Copper-dependent halogenase catalyses unactivated C−H bond functionalization. Nature https://doi.org/10.1038/s41586-024-08362-4 (2025).

  31. Zhang, Y. et al. Self‐resistance in the biosynthesis of fungal macrolides involving cycles of extracellular oxidative activation and intracellular reductive inactivation. Angew. Chem. 133, 6713–6719 (2021).

    Article  Google Scholar 

  32. Huang, K.-F. et al. Structures of human Golgi-resident glutaminyl cyclase and its complexes with inhibitors reveal a large loop movement upon inhibitor binding. J. Biol. Chem. 286, 12439–12449 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Schlenzig, D. et al. Pyroglutamate formation influences solubility and amyloidogenicity of amyloid peptides. Biochemistry 48, 7072–7078 (2009).

    Article  PubMed  CAS  Google Scholar 

  34. Gale, R. P., Phillips, G. L. & Lazarus, H. M. A modest proposal to the transplant publik to prevent harm to people with acute myeloid leukaemia in 1st complete remission cured by chemotherapy. Leukemia 38, 1663–1666 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Morstein, J. et al. Medium-chain lipid conjugation facilitates cell-permeability and bioactivity. J. Am. Chem. Soc. 144, 18532–18544 (2022).

    Article  PubMed  CAS  Google Scholar 

  36. Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR–Cas9 knockout screens. Genome Biol. 15, 554 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kim, J.-H. et al. Lysosomal SLC46A3 modulates hepatic cytosolic copper homeostasis. Nat. Commun. 12, 290 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Gratton, S. E. A. et al. The effect of particle design on cellular internalization pathways. Proc. Natl Acad. Sci. USA 105, 11613–11618 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Banushi, B., Joseph, S. R., Lum, B., Lee, J. J. & Simpson, F. Endocytosis in cancer and cancer therapy. Nat. Rev. Cancer 23, 450–473 (2023).

    Article  PubMed  CAS  Google Scholar 

  40. Hamblett, K. J. et al. SLC46A3 is required to transport catabolites of noncleavable antibody maytansine conjugates from the lysosome to the cytoplasm. Cancer Res. 75, 5329–5340 (2015).

    Article  PubMed  CAS  Google Scholar 

  41. Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576.e16 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. D’Angiolella, V. et al. Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell 149, 1023–1034 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cuadrado, A. et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat. Rev. Drug Discov. 18, 295–317 (2019).

    Article  PubMed  CAS  Google Scholar 

  44. Luo, W. et al. CLASP2 recognizes tubulins exposed at the microtubule plus-end in a nucleotide state-sensitive manner. Sci. Adv. 9, eabq5404 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kavallaris, M. Microtubules and resistance to tubulin-binding agents. Nat. Rev. Cancer 10, 194–204 (2010).

    Article  PubMed  CAS  Google Scholar 

  46. Clijsters, L. et al. Cyclin F controls cell-cycle transcriptional outputs by directing the degradation of the three activator E2Fs. Mol. Cell 74, 1264–1277.e7 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Lachia, M. & Moody, C. J. The synthetic challenge of diazonamide A, a macrocyclic indole bis-oxazole marine natural product. Nat. Prod. Rep. 25, 227 (2008).

    Article  PubMed  CAS  Google Scholar 

  48. Guin, S. et al. Iterative arylation of amino acids and aliphatic amines via δ‐C(sp3)−H activation: experimental and computational exploration. Angew. Chem. Int. Ed. 58, 5633–5638 (2019).

    Article  CAS  Google Scholar 

  49. Zhang, H. & Chen, S. Cyclic peptide drugs approved in the last two decades (2001–2021). RSC Chem. Biol. 3, 18–31 (2022).

    Article  PubMed  CAS  Google Scholar 

  50. Dougherty, P. G., Sahni, A. & Pei, D. Understanding cell penetration of cyclic peptides. Chem. Rev. 119, 10241–10287 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Wang, Z., Koirala, B., Hernandez, Y., Zimmerman, M. & Brady, S. F. Bioinformatic prospecting and synthesis of a bifunctional lipopeptide antibiotic that evades resistance. Science 376, 991–996 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Wang, X. et al. Ustiloxin G, a new cyclopeptide mycotoxin from rice false smut balls. Toxins 9, 54 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bai, R. L. et al. Halichondrin B and homohalichondrin B, marine natural products binding in the vinca ___domain of tubulin. Discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data. J. Biol. Chem. 266, 15882–15889 (1991).

    Article  PubMed  CAS  Google Scholar 

  54. Stanton, R. A., Gernert, K. M., Nettles, J. H. & Aneja, R. Drugs that target dynamic microtubules: a new molecular perspective. Med. Res. Rev. 31, 443–481 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Nies, A. T. et al. Novel drug transporter substrates identification: an innovative approach based on metabolomic profiling, in silico ligand screening and biological validation. Pharmacol. Res. 196, 106941 (2023).

    Article  PubMed  CAS  Google Scholar 

  56. Lin, L., Yee, S. W., Kim, R. B. & Giacomini, K. M. SLC transporters as therapeutic targets: emerging opportunities. Nat. Rev. Drug Discov. 14, 543–560 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Wang, W. W., Gallo, L., Jadhav, A., Hawkins, R. & Parker, C. G. The druggability of solute carriers. J. Med. Chem. 63, 3834–3867 (2020).

    Article  PubMed  CAS  Google Scholar 

  58. Kinneer, K. et al. SLC46A3 as a potential predictive biomarker for antibody–drug conjugates bearing noncleavable linked maytansinoid and pyrrolobenzodiazepine warheads. Clin. Cancer Res. 24, 6570–6582 (2018).

    Article  PubMed  CAS  Google Scholar 

  59. Tomabechi, R. et al. SLC46A3 is a lysosomal proton-coupled steroid conjugate and bile acid transporter involved in transport of active catabolites of T-DM1. Proc. Natl Acad. Sci. USA Nexus 1, pgac063 (2022).

    Google Scholar 

  60. Wang, M. et al. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat. Biotechnol. 34, 828–837 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Zhao, F. et al. Multiplex base-editing enables combinatorial epigenetic regulation for genome mining of fungal natural products. J. Am. Chem. Soc. 145, 413–421 (2023).

    Article  PubMed  CAS  Google Scholar 

  62. Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D 66, 133–144 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).

    Article  PubMed  CAS  Google Scholar 

  65. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Huang, M. et al. Genome-wide CRISPR screen uncovers a synergistic effect of combining Haspin and Aurora kinase B inhibition. Oncogene 39, 4312–4322 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Wang, C. et al. Genome-wide CRISPR screens reveal synthetic lethality of RNASEH2 deficiency and ATR inhibition. Oncogene 38, 2451–2463 (2019).

    Article  PubMed  CAS  Google Scholar 

  68. Olivieri, M. & Durocher, D. Genome-scale chemogenomic CRISPR screens in human cells using the TKOv3 library. STAR Protoc. 2, 100321 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Hart, T. et al. Evaluation and design of genome-wide CRISPR/SpCas9 knockout screens. G3 7, 2719–2727 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Yuan, Q. & Gao, X. Multiplex base- and prime-editing with drive-and-process CRISPR arrays. Nat. Commun. 13, 2771 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Zeng, H. et al. A split and inducible adenine base editor for precise in vivo base editing. Nat. Commun. 14, 5573 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Shabani, S., White, J. M. & Hutton, C. A. Total synthesis of the putative structure of Asperipin-2a and stereochemical reassignment. Org. Lett. 22, 7730–7734 (2020).

    Article  PubMed  CAS  Google Scholar 

  73. Franz, M. et al. Cytoscape.js 2023 update: a graph theory library for visualization and analysis. Bioinformatics 39, btad031 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Oberg, N., Zallot, R. & Gerlt, J. A. EFI-EST, EFI-GNT, and EFI-CGFP: Enzyme Function Initiative (EFI) web resource for genomic enzymology tools. J. Mol. Biol. 435, 168018 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Health (NIH) grants (R35GM138207 to X.G., R35CA274234 to J.C. and R35GM128779 to P.L.), the startup fund provided by the University of Pennsylvania to X.G., Welch Foundation (grant number C-2033-20200401) to Y.G., a predoctoral fellowship from the Houston Area Molecular Biophysics Program (NIH grant number T32 GM008280, Program Director Theodore Wensel, to C.C.), and Cancer Prevention and Research Institute of Texas grants (RR220087 to H.R. and RR210029 to D.G.). DFT calculations were carried out at the University of Pittsburgh Center for Research Computing and the Advanced Cyberinfrastructure Coordination Ecosystem: Services and Support (ACCESS) program, supported by NSF award numbers OAC-2117681, OAC-1928147 and OAC-1928224. B.K. was supported in part by a NLM Training Program in Biomedical Informatics and Data Science fellowship (T15LM007093-31). T.T. was supported in part by NSF EF-2126387.

Author information

Authors and Affiliations

Authors

Contributions

Q.N. and F.Z. performed gene knockout and biochemical assays. Q.N., F.Z., C.S., K.Y., A.Y.D., S.L. and Z.H. performed compound purification and identification, and X.Y. performed chemical synthesis. Q.N., X.Y. and D.Z. performed cytotoxicity assays. M.C.M. performed conformational sampling and DFT calculations. P.L. supervised the computational calculation. Q.N., C.C. and R.S. performed the crystallization and data analysis. Q.N., S.L., R.T., A.X. and H.Z. performed the CRISPR screening and data analysis. S.R.C., S.A.C.F. and Q.N. performed mass analysis. B.K., T.T. and Q.N. performed bioinformatic analysis. D.G. and J.W. designed the cytotoxicity assays. Y.G. designed the protein crystallization and analyzed data. H.R., Q.N. and X.G. designed the chemical synthesis. Q.N. and X.G. conceived the study and wrote the paper. X.G. supervised the study. Q.N., M.Z., P.N.L., P.L., J.W., Y.G., J.C., H.R. and X.G. reviewed and edited the paper.

Corresponding author

Correspondence to Xue Gao.

Ethics declarations

Competing interests

Based on the results presented herein, a provisional patent application (RICE.P0154US.P1) has been filed through Rice University.

Peer review

Peer review information

Nature Chemical Biology thanks Samar Hasnain, Katsuhisa Inoue, Jan Kihlberg and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Chemical structures of representative fungal RiPPs.

α-amanitin and omphalotin A from basidiomycetes (left panel) and ustiloxin B, epichloëcyclin B, victorin C, phomopsin A, and asperipin-2a from ascomycetes (right panel). The structure of epichloëcyclin B was proposed by MS/MS data. The structure of asperipin-2a was revised in 2020 by chemical synthesis72.

Extended Data Fig. 2 Molecular network of metabolites of 12 Aspergillus sp. strains.

This figure showed major clusters in the molecular network. Node sizes represent relative precursor ion intensity. Pie charts represent relative spectral counts of defined groups with different colors. Clusters circled are labeled with the potential compound types identified by GNPS analysis for the corresponding cluster.

Extended Data Fig. 3 Key 2D NMR data and the lowest energy conformer of 1.

a. COSY and HMBC correlations. b. ROESY correlations. The relative configuration of 1 was assigned by detailed interpretation of the ROESY spectrum, in which the correlations of H-27/H-22 and H-27/H-21 revealed that these protons are cofacial. Correlations between H-4/H-6, H-6/H-10, and H-10/H-12 indicated that H-6 and H-12 are the same oriented, while the small coupling constant ( < 3 Hz) suggested that H-12 and H-13 are the same oriented. H-36, H-37, and H-38 were assigned as the same oriented since the ROESY correlations were observed between H-36/H-38 and H-37/H-38. In general, all the amino acid residues were proposed to be L-configuration, thus the absolute configuration was determined as 2S, 4S, 6S, 12R, 13S, 18S, 21S, 23S, 27R, 34R, 38S, 41S. Considering the similar chemical shifts and biosynthetic origins, the stereochemistry of 2-4, was proposed to be the same as those of 1. c. Lowest-energy conformer of compound 1.

Extended Data Fig. 4 LC-MS analysis of mutants with different truncated ApgAT mutations.

The left panel showed EIC of targeted compounds from the extract broth of ApgAT mutants. The proposed chemical structures of these derivatives are shown in the right panel.

Extended Data Fig. 5 Bioinformatic analysis of apg homologous gene clusters.

Homologous gene clusters of apg are found in diverse fungal species. Homologous enzymes of ApgYa and ApgYe are highlighted. The putative core peptides encoded by corresponding homologous BGCs indicated the close relationship between ApgYa and ApgYe with the modification of Leu, Trp, and Tyr.

Extended Data Fig. 6 Sequence similarity network analysis of DUF3328 enzymes.

It contains selected sequences of DUF3328 enzyme family (PF11807) using an alignment score of 52 and visualized using Cytoscape 3.10.073. This sequence similarity network was performed by EFI-EST74 (https://efi.igb.illinois.edu/efi-est/).

Extended Data Fig. 7 HPLC analysis of gene deletion mutants.

(i) ΔapgB, (ii) ΔapgC, (iii) ΔapgD, (iv) ΔapgQ, (v) ΔapgE, (vi) ΔapgF, (vii) ΔapgH, (viii) ΔapgI. (UV 210 nm).

Extended Data Fig. 8 Biochemical characterization of ApgG.

a. Overall structure of ApgG (green) and comparison with human glutaminyl cyclotransferase (PDB ID 3PBE) (purple). b, c. Molecular docking of ApgG and 15 was performed using AutoDock Vina. d. Relative production ratio of ApgG mutants with 15. All assays in this figure are presented as mean ± s.d.; n = 3 biologically independent samples. e. Proposed enzymatic mechanism of ApgG.

Source data

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–23 and Figs. 1–137.

Reporting Summary

Supplementary Data 1

Cartesian coordinate for the computational analysis in Supplementary Figs. 9 and 10.

Supplementary Data 2

Source data for HRMS of 2-L1–2-L7 in Supplementary Figs. 131–137.

Supplementary Data 3

Source data for cytotoxicity assays of asperigimycins in Supplementary Fig. 16.

Source data

Source Data Fig. 3

Source data for dose-dependent curve.

Source Data Fig. 4

Source data for cell viability tests and cellular uptake experiments.

Source Data Extended Data Fig. 8

Source Data for reaction efficiency of ApgG mutants.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, Q., Zhao, F., Yu, X. et al. A class of benzofuranoindoline-bearing heptacyclic fungal RiPPs with anticancer activities. Nat Chem Biol (2025). https://doi.org/10.1038/s41589-025-01946-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41589-025-01946-9

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer