Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lifestyle interventions for cardiometabolic health

Abstract

Unhealthy lifestyle behaviors such as poor diets and physical inactivity account for most of the cardiometabolic disease (CMD) burden, including type 2 diabetes and cardiovascular diseases. Much of this burden is mediated by the effects of unhealthy lifestyle behaviors on overweight and obesity, and disproportionally impacts certain population groups—including those from disadvantaged socioeconomic backgrounds. Combined lifestyle interventions (CLIs), which target multiple behaviors, have the potential to prevent CMD, but their implementation, reach and effectiveness in routine practice are often limited. Considering the increasing availability of effective but expensive pharmaceutical options for weight loss, we review the short-term and long-term benefits and cost-effectiveness of CLIs on overweight, obesity and associated CMDs, in controlled studies and in routine care. Against the backdrop of changing living environments, we discuss the effective components of CLIs and the many challenges associated with implementing them. Finally, we outline future directions for research and implications for policy and practice to improve lifestyle behaviors and cardiometabolic health at the population level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Population-based and high-risk individual approaches for prevention of CMD.
Fig. 2: Evidence for the effects of CLIs.
Fig. 3: Components of CLIs and their effects on cardiometabolic health.

Similar content being viewed by others

References

  1. NCD Risk Factor Collaboration. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 390, 2627–2642 (2017).

    Google Scholar 

  2. Newton, S., Braithwaite, D. & Akinyemiju, T. F. Socio-economic status over the life course and obesity: systematic review and meta-analysis. PLoS ONE 12, e0177151 (2017).

    PubMed  PubMed Central  Google Scholar 

  3. Sobal, J. & Stunkard, A. J. Socioeconomic status and obesity: a review of the literature. Psychol. Bull. 105, 260–275 (1989).

    CAS  PubMed  Google Scholar 

  4. Dwivedi, A. K., Dubey, P., Cistola, D. P. & Reddy, S. Y. Association between obesity and cardiovascular outcomes: updated evidence from meta-analysis studies. Curr. Cardiol. Rep. 22, 25 (2020).

    PubMed  Google Scholar 

  5. Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration. Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1.8 million participants. Lancet 383, 970–983 (2014).

    Google Scholar 

  6. Jayedi, A. et al. Anthropometric and adiposity indicators and risk of type 2 diabetes: systematic review and dose-response meta-analysis of cohort studies. BMJ 376, e067516 (2022).

    PubMed  PubMed Central  Google Scholar 

  7. Mongraw-Chaffin, M. L., Peters, S. A. E., Huxley, R. R. & Woodward, M. The sex-specific association between BMI and coronary heart disease: a systematic review and meta-analysis of 95 cohorts with 1.2 million participants. Lancet Diabetes Endocrinol. 3, 437–449 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. Timmis, A. et al. European Society of Cardiology: the 2023 Atlas of Cardiovascular Disease Statistics. Eur. Heart J. 45, 4019–4062 (2024).

  9. Timmis, A. et al. European Society of Cardiology: Cardiovascular Disease Statistics 2019. Eur. Heart J. 41, 12–85 (2020).

    PubMed  Google Scholar 

  10. Popkin, B. M. Global nutrition dynamics: the world is shifting rapidly toward a diet linked with noncommunicable diseases. Am. J. Clin. Nutr. 84, 289–298 (2006).

    CAS  PubMed  Google Scholar 

  11. Global Burden of Disease Risk Factor Collaboration. Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 403, 2162–2203 (2024).

    Google Scholar 

  12. Barry, E. et al. Efficacy and effectiveness of screen and treat policies in prevention of type 2 diabetes: systematic review and meta-analysis of screening tests and interventions. BMJ 356, i6538 (2017).

    PubMed  Google Scholar 

  13. Estruch, R. et al. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 378, e34 (2018).

    CAS  PubMed  Google Scholar 

  14. Lincoff, A. M. et al. Semaglutide and cardiovascular outcomes in obesity without diabetes. N. Engl. J. Med. 389, 2221–2232 (2023).

    CAS  PubMed  Google Scholar 

  15. Usman, M. S. et al. The cardiovascular effects of novel weight loss therapies. Eur. Heart J. 44, 5036–5048 (2023).

    CAS  PubMed  Google Scholar 

  16. Global Burden of Disease Diet Collaboration. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393, 1958–1972 (2019).

    Google Scholar 

  17. Global Burden of Disease Risk Factor Collaboration. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1659–1724 (2016).

    Google Scholar 

  18. Chareonrungrueangchai, K., Wongkawinwoot, K., Anothaisintawee, T. & Reutrakul, S. Dietary factors and risks of cardiovascular diseases: an umbrella review. Nutrients 12, 1088 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Juul, F., Vaidean, G. & Parekh, N. Ultra-processed foods and cardiovascular diseases: potential mechanisms of action. Adv. Nutr. 12, 1673–1680 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Meier, T. et al. Cardiovascular mortality attributable to dietary risk factors in 51 countries in the WHO European Region from 1990 to 2016: a systematic analysis of the Global Burden of Disease Study. Eur. J. Epidemiol. 34, 37–55 (2019).

    PubMed  Google Scholar 

  21. Vaduganathan, M., Mensah, G. A., Turco, J. V., Fuster, V. & Roth, G. A. The global burden of cardiovascular diseases and risk: a compass for future health. J. Am. Coll. Cardiol. 80, 2361–2371 (2022).

    PubMed  Google Scholar 

  22. Leme, A. C. B., Hou, S., Fisberg, R. M., Fisberg, M. & Haines, J. Adherence to food-based dietary guidelines: a systemic review of high-income and low- and middle-income countries. Nutrients 13, 1038 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, I. M. et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 380, 219–229 (2012).

    PubMed  PubMed Central  Google Scholar 

  24. Warburton, D. E. R. & Bredin, S. S. D. Health benefits of physical activity: a systematic review of current systematic reviews. Curr. Opin. Cardiol. 32, 541–556 (2017).

    PubMed  Google Scholar 

  25. Blodgett, J. M. et al. Device-measured physical activity and cardiometabolic health: the Prospective Physical Activity, Sitting, and Sleep (ProPASS) consortium. Eur. Heart J. 45, 458–471 (2024).

    CAS  PubMed  Google Scholar 

  26. Eijsvogels, T. M., George, K. P. & Thompson, P. D. Cardiovascular benefits and risks across the physical activity continuum. Curr. Opin. Cardiol. 31, 566–571 (2016).

    PubMed  Google Scholar 

  27. Itani, O., Jike, M., Watanabe, N. & Kaneita, Y. Short sleep duration and health outcomes: a systematic review, meta-analysis, and meta-regression. Sleep. Med. 32, 246–256 (2017).

    PubMed  Google Scholar 

  28. Kivimaki, M. & Steptoe, A. Effects of stress on the development and progression of cardiovascular disease. Nat. Rev. Cardiol. 15, 215–229 (2018).

    CAS  PubMed  Google Scholar 

  29. Ding, D., Rogers, K., van der Ploeg, H., Stamatakis, E. & Bauman, A. E. Traditional and emerging lifestyle risk behaviors and all-cause mortality in middle-aged and older adults: evidence from a large population-based Australian cohort. PLoS Med. 12, e1001917 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. Fransen, H. P. et al. Associations between lifestyle factors and an unhealthy diet. Eur. J. Public Health 27, 274–278 (2017).

    PubMed  Google Scholar 

  31. Rose, G. Sick individuals and sick populations. Int. J. Epidemiol. 14, 32–38 (1985).

    CAS  PubMed  Google Scholar 

  32. Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505–1513 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lakerveld, J. & Mackenbach, J. The upstream determinants of adult obesity. Obes. Facts 10, 216–222 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. Popkin, B. M. & Ng, S. W. The nutrition transition to a stage of high obesity and noncommunicable disease prevalence dominated by ultra-processed foods is not inevitable. Obes. Rev. 23, e13366 (2022).

    PubMed  Google Scholar 

  35. Bland, M., Burke, M. I. & Bertolaccini, K. Taking steps toward healthy & sustainable transport investment: a systematic review of economic evaluations in the academic literature on large-scale active transport infrastructure. Int. J. Sustain. Transp. 18, 201–220 (2024).

    Google Scholar 

  36. Blakely, T. et al. The effect of food taxes and subsidies on population health and health costs: a modelling study. Lancet Public Health 5, e404–e413 (2020).

    PubMed  Google Scholar 

  37. Ludwig, J. et al. Neighborhoods, obesity, and diabetes–a randomized social experiment. N. Engl. J. Med 365, 1509–1519 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Michie, S. et al. The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: building an international consensus for the reporting of behavior change interventions. Ann. Behav. Med. 46, 81–95 (2013).

    PubMed  Google Scholar 

  39. Patnode, C. D., Redmond, N., Iacocca, M. O. & Henninger, M. Behavioral counseling interventions to promote a healthy diet and physical activity for cardiovascular disease prevention in adults without known cardiovascular disease risk factors: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA 328, 375–388 (2022).

    PubMed  Google Scholar 

  40. Bergum, H., Sandven, I. & Klemsdal, T. O. Long-term effects (> 24 months) of multiple lifestyle intervention on major cardiovascular risk factors among high-risk subjects: a meta-analysis. BMC Cardiovasc. Disord. 21, 181 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dunkley, A. J. et al. Diabetes prevention in the real world: effectiveness of pragmatic lifestyle interventions for the prevention of type 2 diabetes and of the impact of adherence to guideline recommendations: a systematic review and meta-analysis. Diabetes Care 37, 922–933 (2014).

    PubMed  Google Scholar 

  42. Galaviz, K. I. et al. Global diabetes prevention interventions: a systematic review and network meta-analysis of the real-world impact on incidence, weight, and glucose. Diabetes Care 41, 1526–1534 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. Dunkley, A. J. et al. Effectiveness of interventions for reducing diabetes and cardiovascular disease risk in people with metabolic syndrome: systematic review and mixed treatment comparison meta-analysis. Diabetes Obes. Metab. 14, 616–625 (2012).

    CAS  PubMed  Google Scholar 

  44. Diabetes Prevention Program Research Group. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet 374, 1677–1686 (2009).

    PubMed Central  Google Scholar 

  45. Li, G. et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: a 20-year follow-up study. Lancet 371, 1783–1789 (2008).

    PubMed  Google Scholar 

  46. Lindstrom, J. et al. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. Lancet 368, 1673–1679 (2006).

    PubMed  Google Scholar 

  47. Zucatti, K. P. et al. Long-term effect of lifestyle interventions on the cardiovascular and all-cause mortality of subjects with prediabetes and type 2 diabetes: a systematic review and meta-analysis. Diabetes Care 45, 2787–2795 (2022).

    PubMed  Google Scholar 

  48. Li, G. et al. Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing Diabetes Prevention Study: a 23-year follow-up study. Lancet Diabetes Endocrinol. 2, 474–480 (2014).

    PubMed  Google Scholar 

  49. Gong, Q. et al. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing Diabetes Prevention Outcome Study. Lancet Diabetes Endocrinol. 7, 452–461 (2019).

    PubMed  PubMed Central  Google Scholar 

  50. Prentice, R. L. et al. Low-fat dietary pattern among postmenopausal women influences long-term cancer, cardiovascular disease, and diabetes outcomes. J. Nutr. 149, 1565–1574 (2019).

    PubMed  PubMed Central  Google Scholar 

  51. Tinker, L. F. et al. Low-fat dietary pattern and risk of treated diabetes mellitus in postmenopausal women: the Women’s Health Initiative randomized controlled dietary modification trial. Arch. Intern. Med. 168, 1500–1511 (2008).

    PubMed  Google Scholar 

  52. Harris, T. et al. Effect of pedometer-based walking interventions on long-term health outcomes: prospective 4-year follow-up of two randomised controlled trials using routine primary care data. PLoS Med. 16, e1002836 (2019).

    PubMed  PubMed Central  Google Scholar 

  53. Newman, A. B. et al. Cardiovascular events in a physical activity intervention compared with a successful aging intervention: the LIFE Study randomized trial. JAMA Cardiol. 1, 568–574 (2016).

    PubMed  PubMed Central  Google Scholar 

  54. Gong, J., Chen, X. & Li, S. Efficacy of a community-based physical activity program KM2H2 for stroke and heart attack prevention among senior hypertensive patients: a cluster randomized controlled phase-II trial. PLoS ONE 10, e0139442 (2015).

    PubMed  PubMed Central  Google Scholar 

  55. Arija, V. et al. Effectiveness of a physical activity program on cardiovascular disease risk in adult primary health-care users: the “Pas-a-Pas” community intervention trial. BMC Public Health 17, 576 (2017).

    PubMed  PubMed Central  Google Scholar 

  56. Look Ahead Research Group. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N. Engl. J. Med. 369, 145–154 (2013).

    Google Scholar 

  57. Sone, H. et al. Long-term lifestyle intervention lowers the incidence of stroke in Japanese patients with type 2 diabetes: a nationwide multicentre randomised controlled trial (the Japan Diabetes Complications Study). Diabetologia 53, 419–428 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Jayedi, A., Zeraattalab-Motlagh, S., Shahinfar, H., Gregg, E. W. & Shab-Bidar, S. Effect of calorie restriction in comparison to usual diet or usual care on remission of type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 117, 870–882 (2023).

    CAS  PubMed  Google Scholar 

  59. Churuangsuk, C. et al. Diets for weight management in adults with type 2 diabetes: an umbrella review of published meta-analyses and systematic review of trials of diets for diabetes remission. Diabetologia 65, 14–36 (2022).

    PubMed  Google Scholar 

  60. Dambha-Miller, H., Hounkpatin, H. O., Stuart, B., Farmer, A. & Griffin, S. Type 2 diabetes remission trajectories and variation in risk of diabetes complications: a population-based cohort study. PLoS ONE 18, e0290791 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Teixeira, P. J. et al. Successful behavior change in obesity interventions in adults: a systematic review of self-regulation mediators. BMC Med. 13, 84 (2015).

    PubMed  PubMed Central  Google Scholar 

  62. Kritchevsky, S. B. et al. Intentional weight loss and all-cause mortality: a meta-analysis of randomized clinical trials. PLoS ONE 10, e0121993 (2015).

    PubMed  PubMed Central  Google Scholar 

  63. Penn, L. et al. Importance of weight loss maintenance and risk prediction in the prevention of type 2 diabetes: analysis of European Diabetes Prevention Study RCT. PLoS ONE 8, e57143 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Schwingshackl, L., Dias, S. & Hoffmann, G. Impact of long-term lifestyle programmes on weight loss and cardiovascular risk factors in overweight/obese participants: a systematic review and network meta-analysis. Syst. Rev. 3, 130 (2014).

    PubMed  PubMed Central  Google Scholar 

  65. Lean, M. E. et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet 391, 541–551 (2018).

    PubMed  Google Scholar 

  66. Taheri, S. et al. Effect of intensive lifestyle intervention on bodyweight and glycaemia in early type 2 diabetes (DIADEM-I): an open-label, parallel-group, randomised controlled trial. Lancet Diabetes Endocrinol. 8, 477–489 (2020).

    PubMed  Google Scholar 

  67. Carraca, E. V., Santos, I., Mata, J. & Teixeira, P. J. Psychosocial pretreatment predictors of weight control: a systematic review update. Obes. Facts 11, 67–82 (2018).

    PubMed  PubMed Central  Google Scholar 

  68. Salmela, J. et al. Eating behavior dimensions and 9-year weight loss maintenance: a sub-study of the Finnish Diabetes prevention study. Int. J. Obes. 47, 564–573 (2023).

    Google Scholar 

  69. Greaves, C. J. et al. Systematic review of reviews of intervention components associated with increased effectiveness in dietary and physical activity interventions. BMC Public Health 11, 119 (2011).

    PubMed  PubMed Central  Google Scholar 

  70. Lawlor, E. R. et al. Third-wave cognitive behaviour therapies for weight management: A systematic review and network meta-analysis. Obes. Rev. 21, e13013 (2020).

    PubMed  PubMed Central  Google Scholar 

  71. US Preventative Services Task Force. Behavioral counseling interventions to promote a healthy diet and physical activity for cardiovascular disease prevention in adults without cardiovascular disease risk factors: US Preventive Services Task Force Recommendation Statement. JAMA 328, 367–374 (2022).

    Google Scholar 

  72. Gostoli, S. et al. Behavioral lifestyle interventions for weight loss in overweight or obese patients with type 2 diabetes: a systematic review of the literature. Curr. Obes. Rep. 13, 224–241 (2024).

  73. Saaristo, T. et al. Lifestyle intervention for prevention of type 2 diabetes in primary health care: one-year follow-up of the Finnish National Diabetes Prevention Program (FIN-D2D). Diabetes Care 33, 2146–2151 (2010).

    PubMed  PubMed Central  Google Scholar 

  74. Dunbar, J. A. et al. Scaling up diabetes prevention in Victoria, Australia: policy development, implementation, and evaluation. Diabetes Care 37, 934–942 (2014).

    PubMed  Google Scholar 

  75. Stokes, J. et al. Implementing a national diabetes prevention programme in England: lessons learned. BMC Health Serv. Res. 19, 991 (2019).

    PubMed  PubMed Central  Google Scholar 

  76. Oosterhoff, M., Feenstra, T. & de Wit, A. Monitor gecombineerde leefstijl interventie 2023. (Bilthoven, 2023).

  77. Ravindrarajah, R. et al. Referral to the NHS Diabetes Prevention Programme and conversion from nondiabetic hyperglycaemia to type 2 diabetes mellitus in England: a matched cohort analysis. PLoS Med 20, e1004177 (2023).

    PubMed  PubMed Central  Google Scholar 

  78. Absetz, P. et al. Type 2 diabetes prevention in the real world: three-year results of the GOAL lifestyle implementation trial. Diabetes Care 32, 1418–1420 (2009).

    CAS  PubMed  Google Scholar 

  79. Oldenburg, B., Absetz, P., Dunbar, J. A., Reddy, P. & O’Neil, A. The spread and uptake of diabetes prevention programs around the world: a case study from Finland and Australia. Transl. Behav. Med. 1, 270–282 (2011).

    PubMed  PubMed Central  Google Scholar 

  80. Roberts, S. et al. Preventing type 2 diabetes: systematic review of studies of cost-effectiveness of lifestyle programmes and metformin, with and without screening, for pre-diabetes. BMJ Open 7, e017184 (2017).

    PubMed  PubMed Central  Google Scholar 

  81. Zhou, X. et al. Cost-effectiveness of diabetes prevention interventions targeting high-risk individuals and whole populations: a systematic review. Diabetes Care 43, 1593–1616 (2020).

    PubMed  Google Scholar 

  82. Wareham, N. J. Mind the gap: efficacy versus effectiveness of lifestyle interventions to prevent diabetes. Lancet Diabetes Endocrinol. 3, 160–161 (2015).

    PubMed  Google Scholar 

  83. Aziz, Z., Absetz, P., Oldroyd, J., Pronk, N. P. & Oldenburg, B. A systematic review of real-world diabetes prevention programs: learnings from the last 15 years. Implement. Sci. 10, 172 (2015).

    PubMed  PubMed Central  Google Scholar 

  84. Deslippe, A. L. et al. Barriers and facilitators to diet, physical activity and lifestyle behavior intervention adherence: a qualitative systematic review of the literature. Int. J. Behav. Nutr. Phys. Act. 20, 14 (2023).

    PubMed  PubMed Central  Google Scholar 

  85. Ali, M. K., Echouffo-Tcheugui, J. & Williamson, D. F. How effective were lifestyle interventions in real-world settings that were modeled on the Diabetes Prevention Program? Health Aff. 31, 67–75 (2012).

    Google Scholar 

  86. Pronk, N. P., Remington, P. L. & Community Preventive Services Task, F. Combined diet and physical activity promotion programs for prevention of diabetes: Community Preventive Services Task Force Recommendation Statement. Ann. Intern. Med. 163, 465–468 (2015).

    PubMed  Google Scholar 

  87. Nhim, K. et al. Primary care providers’ prediabetes screening, testing, and referral behaviors. Am. J. Prev. Med. 55, e39–e47 (2018).

    PubMed  PubMed Central  Google Scholar 

  88. Ritchie, N. D., Baucom, K. J. W. & Sauder, K. A. Current perspectives on the impact of the National Diabetes Prevention Program: building on successes and overcoming challenges. Diabetes Metab. Syndr. Obes. 13, 2949–2957 (2020).

    PubMed  PubMed Central  Google Scholar 

  89. van der Heiden, W., Lacroix, J., Moll van Charante, E. P. & Beune, E. GPs’ views on the implementation of combined lifestyle interventions in primary care in the Netherlands: a qualitative study. BMJ Open 12, e056451 (2022).

    PubMed  PubMed Central  Google Scholar 

  90. Dunbar, J. A. Diabetes prevention in Australia: 10 years results and experience. Diabetes Metab. J. 41, 160–167 (2017).

    PubMed  PubMed Central  Google Scholar 

  91. Machado, A. M. et al. Understanding weight regain after a nutritional weight loss intervention: systematic review and meta-analysis. Clin. Nutr. ESPEN 49, 138–153 (2022).

    PubMed  Google Scholar 

  92. van Baak, M. A. & Mariman, E. C. M. Obesity-induced and weight-loss-induced physiological factors affecting weight regain. Nat. Rev. Endocrinol. 19, 655–670 (2023).

    PubMed  Google Scholar 

  93. van Galen, K. A. et al. Brain responses to nutrients are severely impaired and not reversed by weight loss in humans with obesity: a randomized crossover study. Nat. Metab. 5, 1059–1072 (2023).

    PubMed  Google Scholar 

  94. Beulens, J. W. J. et al. Environmental risk factors of type 2 diabetes-an exposome approach. Diabetologia 65, 263–274 (2022).

    CAS  PubMed  Google Scholar 

  95. den Braver, N. R. et al. Built environmental characteristics and diabetes: a systematic review and meta-analysis. BMC Med. 16, 12 (2018).

    Google Scholar 

  96. Liu, M. et al. The built environment and cardiovascular disease: an umbrella review and meta-meta-analysis. Eur. J. Prev. Cardiol. 30, 1801–1827 (2023).

    PubMed  Google Scholar 

  97. McCormack, G. R., Patterson, M., Frehlich, L. & Lorenzetti, D. L. The association between the built environment and intervention-facilitated physical activity: a narrative systematic review. Int J. Behav. Nutr. Phys. Act. 19, 86 (2022).

    PubMed  PubMed Central  Google Scholar 

  98. Pitts, S. B. J. et al. Examining the association between intervention-related changes in diet, physical activity, and weight as moderated by the food and physical activity environments among rural, southern adults. J. Acad. Nutr. Diet. 117, 1618–1627 (2017).

    Google Scholar 

  99. Tarlov, E. et al. Does effectiveness of weight management programs depend on the food environment? Health Serv. Res. 53, 4268–4290 (2018).

    PubMed  PubMed Central  Google Scholar 

  100. Wedick, N. M. et al. Access to healthy food stores modifies effect of a dietary intervention. Am. J. Prev. Med. 48, 309–317 (2015).

    PubMed  Google Scholar 

  101. Nieuwenhuijsen, M. J. Urban and transport planning pathways to carbon neutral, liveable and healthy cities; a review of the current evidence. Environ. Int. 140, 105661 (2020).

    PubMed  Google Scholar 

  102. Giles-Corti, B. et al. City planning and population health: a global challenge. Lancet 388, 2912–2924 (2016).

    PubMed  Google Scholar 

  103. Lowe, M. et al. City planning policies to support health and sustainability: an international comparison of policy indicators for 25 cities. Lancet Glob. Health 10, e882–e894 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Stevenson, M. et al. Land use, transport, and population health: estimating the health benefits of compact cities. Lancet 388, 2925–2935 (2016).

    PubMed  PubMed Central  Google Scholar 

  105. Hunter, R. F. et al. Environmental, health, wellbeing, social and equity effects of urban green space interventions: a meta-narrative evidence synthesis. Environ. Int. 130, 104923 (2019).

    CAS  PubMed  Google Scholar 

  106. Zhang, Y. et al. The impact of interventions in the built environment on physical activity levels: a systematic umbrella review. Int. J. Behav. Nutr. Phys. Act. 19, 156 (2022).

    PubMed  PubMed Central  Google Scholar 

  107. den Braver, N. R. et al. Higher neighborhood drivability is associated with a higher diabetes risk in younger adults: a population-based cohort study in Toronto, Canada. Diabetes Care 46, 1177–1184 (2023).

    Google Scholar 

  108. Lai, K. Y., Webster, C., Gallacher, J. E. & Sarkar, C. Associations of urban built environment with cardiovascular risks and mortality: a systematic review. J. Urban Health 100, 745–787 (2023).

    PubMed  PubMed Central  Google Scholar 

  109. Karmeniemi, M., Lankila, T., Ikaheimo, T., Koivumaa-Honkanen, H. & Korpelainen, R. The built environment as a determinant of physical activity: a systematic review of longitudinal studies and natural experiments. Ann. Behav. Med. 52, 239–251 (2018).

    PubMed  Google Scholar 

  110. Xie, Y. et al. Credibility of the evidence on green space and human health: an overview of meta-analyses using evidence grading approaches. EBioMedicine 106, 105261 (2024).

    PubMed  PubMed Central  Google Scholar 

  111. Hyseni, L. et al. The effects of policy actions to improve population dietary patterns and prevent diet-related non-communicable diseases: scoping review. Eur. J. Clin. Nutr. 71, 694–711 (2017).

    CAS  PubMed  Google Scholar 

  112. Andreyeva, T., Marple, K., Marinello, S., Moore, T. E. & Powell, L. M. Outcomes following taxation of sugar-sweetened beverages: a systematic review and meta-analysis. JAMA Netw. Open 5, e2215276 (2022).

    PubMed  PubMed Central  Google Scholar 

  113. Andreyeva, T., Marple, K., Moore, T. E. & Powell, L. M. Evaluation of economic and health outcomes associated with food taxes and subsidies: a systematic review and meta-analysis. JAMA Netw. Open 5, e2214371 (2022).

    PubMed  PubMed Central  Google Scholar 

  114. Itria, A., Borges, S. S., Rinaldi, A. E. M., Nucci, L. B. & Enes, C. C. Taxing sugar-sweetened beverages as a policy to reduce overweight and obesity in countries of different income classifications: a systematic review. Public Health Nutr. 24, 5550–5560 (2021).

    PubMed  PubMed Central  Google Scholar 

  115. Lee, Y. et al. Health impact and cost-effectiveness of volume, tiered, and absolute sugar content sugar-sweetened beverage tax policies in the united states: a microsimulation study. Circulation 142, 523–534 (2020).

    PubMed  PubMed Central  Google Scholar 

  116. Boyland, E. et al. Systematic review of the effect of policies to restrict the marketing of foods and non-alcoholic beverages to which children are exposed. Obes. Rev. 23, e13447 (2022).

    PubMed  PubMed Central  Google Scholar 

  117. Song, J. et al. Impact of color-coded and warning nutrition labelling schemes: a systematic review and network meta-analysis. PLoS Med. 18, e1003765 (2021).

    PubMed  PubMed Central  Google Scholar 

  118. Croker, H., Packer, J., Russell, S. J., Stansfield, C. & Viner, R. M. Front of pack nutritional labelling schemes: a systematic review and meta-analysis of recent evidence relating to objectively measured consumption and purchasing. J. Hum. Nutr. Diet. 33, 518–537 (2020).

    CAS  PubMed  Google Scholar 

  119. Brown, H. et al. No new fast-food outlets allowed! Evaluating the effect of planning policy on the local food environment in the North East of England. Soc. Sci. Med. 306, 115126 (2022).

    PubMed  Google Scholar 

  120. Sturm, R. & Hattori, A. Diet and obesity in Los Angeles County 2007–2012: is there a measurable effect of the 2008 “Fast-Food Ban”? Soc. Sci. Med. 133, 205–211 (2015).

    PubMed  PubMed Central  Google Scholar 

  121. Lorenc, T. & Oliver, K. Adverse effects of public health interventions: a conceptual framework. J. Epidemiol. Community Health 68, 288–290 (2014).

    PubMed  Google Scholar 

  122. Hammerton, G. & Munafo, M. R. Causal inference with observational data: the need for triangulation of evidence. Psychol. Med. 51, 563–578 (2021).

    PubMed  PubMed Central  Google Scholar 

  123. Lawlor, D. A., Tilling, K. & Davey Smith, G. Triangulation in aetiological epidemiology. Int. J. Epidemiol. 45, 1866–1886 (2016).

    PubMed  Google Scholar 

  124. Marteau, T. M., Rutter, H. & Marmot, M. Changing behaviour: an essential component of tackling health inequalities. BMJ 372, n332 (2021).

    PubMed  PubMed Central  Google Scholar 

  125. Zhang, M. et al. Cancer outcomes among prediabetes and type 2 diabetes populations with dietary and physical activity-based lifestyle interventions. J. Clin. Endocrinol. Metab. 108, 2124–2133 (2023).

    PubMed  Google Scholar 

  126. Stol, D. M. et al. Implementation of selective prevention for cardiometabolic diseases; are Dutch general practices adequately prepared? Scand. J. Prim. Health Care 36, 20–27 (2018).

    PubMed  PubMed Central  Google Scholar 

  127. Tuomilehto, J., Uusitupa, M., Gregg, E. W. & Lindstrom, J. Type 2 Diabetes Prevention Programs—from proof-of-concept trials to national intervention and beyond. J. Clin. Med. 12, 1876 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Markkanen, J. O. et al. Mobile health behaviour change support system as independent treatment tool for obesity: a randomized controlled trial. Int. J. Obes. 48, 376–383 (2024).

    Google Scholar 

  129. Nanditha, A. et al. A pragmatic and scalable strategy using mobile technology to promote sustained lifestyle changes to prevent type 2 diabetes in India and the UK: a randomised controlled trial. Diabetologia 63, 486–496 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Aroda, V. R. et al. Metformin for diabetes prevention: insights gained from the Diabetes Prevention Program/Diabetes Prevention Program Outcomes Study. Diabetologia 60, 1601–1611 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Saito, T. et al. Lifestyle modification and prevention of type 2 diabetes in overweight Japanese with impaired fasting glucose levels: a randomized controlled trial. Arch. Intern. Med. 171, 1352–1360 (2011).

    PubMed  Google Scholar 

  132. Tuomilehto, J. et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 344, 1343–1350 (2001).

    CAS  PubMed  Google Scholar 

  133. Gardner, C. D. et al. Effect of low-fat vs low-carbohydrate diet on 12-month weight loss in overweight adults and the association with genotype pattern or insulin secretion: the DIETFITS Randomized Clinical Trial. JAMA 319, 667–679 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Ben-Yacov, O. et al. Personalized postprandial glucose response-targeting diet versus mediterranean diet for glycemic control in prediabetes. Diabetes Care 44, 1980–1991 (2021).

    CAS  PubMed  Google Scholar 

  135. Berry, S. E. et al. Human postprandial responses to food and potential for precision nutrition. Nat. Med. 26, 964–973 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).

    CAS  PubMed  Google Scholar 

  137. Wadden, T. A. et al. Effect of subcutaneous semaglutide vs placebo as an adjunct to intensive behavioral therapy on body weight in adults with overweight or obesity: the STEP 3 randomized clinical trial. JAMA 325, 1403–1413 (2021).

    CAS  PubMed  Google Scholar 

  138. Gilmore, A. B. et al. Defining and conceptualising the commercial determinants of health. Lancet 401, 1194–1213 (2023).

    PubMed  Google Scholar 

  139. Swinburn, B. A. et al. The Global Syndemic of Obesity, Undernutrition, and Climate Change: the Lancet Commission report. Lancet 393, 791–846 (2019).

    PubMed  Google Scholar 

  140. Theis, D. R. Z. & White, M. Is obesity policy in england fit for purpose? analysis of government strategies and policies, 1992–2020. Milbank Q 99, 126–170 (2021).

    PubMed  PubMed Central  Google Scholar 

  141. Flor, L. S., Reitsma, M. B., Gupta, V., Ng, M. & Gakidou, E. The effects of tobacco control policies on global smoking prevalence. Nat. Med 27, 239–243 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Paraje, G., Flores Munoz, M., Wu, D. C. & Jha, P. Reductions in smoking due to ratification of the Framework Convention for Tobacco Control in 171 countries. Nat. Med. 30, 683–689 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Saloojee, Y. & Dagli, E. Tobacco industry tactics for resisting public policy on health. Bull. World Health Organ. 78, 902–910 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Brownell, K. D. & Warner, K. E. The perils of ignoring history: big tobacco played dirty and millions died. How similar is big food? Milbank Q 87, 259–294 (2009).

    PubMed  PubMed Central  Google Scholar 

  145. de Lacy-Vawdon, C., Vandenberg, B. & Livingstone, C. Power and other commercial determinants of health: an empirical study of the australian food, alcohol, and gambling industries. Int. J. Health Policy Manag. 12, 7723 (2023).

    PubMed  PubMed Central  Google Scholar 

  146. Petticrew, M. et al. ‘Nothing can be done until everything is done’: the use of complexity arguments by food, beverage, alcohol and gambling industries. J. Epidemiol. Community Health 71, 1078–1083 (2017).

    PubMed  Google Scholar 

  147. Kim, J. C. et al. Outcomes and adverse events after bariatric surgery: an updated systematic review and meta-analysis, 2013–2023. J. Metab. Bariatr. Surg. 12, 76–88 (2023).

    PubMed  PubMed Central  Google Scholar 

  148. Mullertz, A. L. O., Sandsdal, R. M., Jensen, S. B. K. & Torekov, S. S. Potent incretin-based therapy for obesity: a systematic review and meta-analysis of the efficacy of semaglutide and tirzepatide on body weight and waist circumference, and safety. Obes. Rev. 25, e13717 (2024).

    CAS  PubMed  Google Scholar 

  149. Iqbal, J. et al. Effect of glucagon-like peptide-1 receptor agonists on body weight in adults with obesity without diabetes mellitus—a systematic review and meta-analysis of randomized control trials. Obes. Rev. 23, e13435 (2022).

    CAS  PubMed  Google Scholar 

  150. Singh, A. K. & Singh, R. Pharmacotherapy in obesity: a systematic review and meta-analysis of randomized controlled trials of anti-obesity drugs. Expert Rev. Clin. Pharm. 13, 53–64 (2020).

    CAS  Google Scholar 

  151. Henderson, J. et al. Weight loss treatment and longitudinal weight change among primary care patients with obesity. JAMA Netw. Open 7, e2356183 (2024).

    PubMed  PubMed Central  Google Scholar 

  152. Sharif, F. V., Yousefi, N. & Sharif, Z. Economic evaluations of anti-obesity interventions in obese adults: an umbrella review. Obes. Surg. 34, 1834–1845 (2024).

    PubMed  Google Scholar 

  153. Kim, M. S. et al. Association of bariatric surgery with indicated and unintended outcomes: an umbrella review and meta-analysis for risk-benefit assessment. Obes. Rev. 25, e13670 (2024).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joline W. J. Beulens.

Ethics declarations

Competing interests

S.G. reports receiving honoraria from Astra Zeneca and Eli Lilly for contributing to postgraduate educational sessions. The remaining authors have no conflicts of interest to disclose.

Peer review

Peer review information

Nature Medicine thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Karen O’Leary, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rutters, F., den Braver, N.R., Lakerveld, J. et al. Lifestyle interventions for cardiometabolic health. Nat Med 30, 3455–3467 (2024). https://doi.org/10.1038/s41591-024-03373-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-024-03373-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing