Abstract
The dura, arachnoid and pia mater, as the constituent layers of the meninges, along with cerebrospinal fluid in the subarachnoid space and ventricles, are essential protectors of the brain and spinal cord. Complemented by immune cells, blood vessels, lymphatic vessels and nerves, these connective tissue layers have held many secrets that have only recently begun to be revealed. Each meningeal layer is now known to have molecularly distinct types of fibroblasts. Cerebrospinal fluid clearance through peripheral lymphatics and lymph nodes is well documented, but its routes and flow dynamics are debated. Advances made in meningeal immune functions are also debated. This Review considers the cellular and molecular structure and function of the dura, arachnoid and pia mater in the context of conventional views, recent progress, and what is uncertain or unknown. The hallmarks of meningeal pathophysiology are identified toward developing a more complete understanding of the meninges in health and disease.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
27,99 € / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
209,00 € per year
only 17,42 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Adeeb, N. et al. The intracranial arachnoid mater: a comprehensive review of its history, anatomy, imaging, and pathology. Childs Nerv. Syst. 29, 17–33 (2013).
Engelhardt, B., Vajkoczy, P. & Weller, R. O. The movers and shapers in immune privilege of the CNS. Nat. Immunol. 18, 123–131 (2017).
Castro Dias, M., Mapunda, J. A., Vladymyrov, M. & Engelhardt, B. Structure and junctional complexes of endothelial, epithelial and glial brain barriers. Int. J. Mol. Sci. 20, 5372 (2019).
Derk, J., Jones, H. E., Como, C., Pawlikowski, B. & Siegenthaler, J. A. Living on the edge of the CNS: meninges cell diversity in health and disease. Front. Cell Neurosci. 15, 703944 (2021).
Proulx, S. T. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cell. Mol. Life Sci. 78, 2429–2457 (2021).
Mapunda, J. A. et al. VE-cadherin in arachnoid and pia mater cells serves as a suitable landmark for in vivo imaging of CNS immune surveillance and inflammation. Nat. Commun. 14, 5837 (2023).
Pietilä, R. et al. Molecular anatomy of adult mouse leptomeninges. Neuron 111, 3745–3764 (2023).
Ahn, J. H. et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 572, 62–66 (2019).
Rustenhoven, J. et al. Age-related alterations in meningeal immunity drive impaired CNS lymphatic drainage. J. Exp. Med. 220, e20221929 (2023).
Yoon, J. H. et al. Nasopharyngeal lymphatic plexus is a hub for cerebrospinal fluid drainage. Nature 625, 768–777 (2024).
Koh, L., Zakharov, A. & Johnston, M. Integration of the subarachnoid space and lymphatics: is it time to embrace a new concept of cerebrospinal fluid absorption? Cerebrospinal Fluid Res. 2, 6 (2005).
Kim, Y. C. et al. Immaturity of immune cells around the dural venous sinuses contributes to viral meningoencephalitis in neonates. Sci. Immunol. 8, eadg6155 (2023).
Witten, A., Marotta, D. & Cohen-Gadol, A. Developmental innervation of cranial dura mater and migraine headache: a narrative literature review. Headache 61, 569–575 (2021).
Levy, D. & Moskowitz, M. A. Meningeal mechanisms and the migraine connection. Annu. Rev. Neurosci. 46, 39–58 (2023).
Nabeshima, S., Reese, T. S., Landis, D. M. & Brightman, M. W. Junctions in the meninges and marginal glia. J. Comp. Neurol. 164, 127–169 (1975).
Lin, M. S. Subdural lesions linking additional intracranial spaces and chronic subdural hematomas: a narrative review with mutual correlation and possible mechanisms behind high recurrence. Diagnostics 13, 235 (2023).
Mortazavi, M. M. et al. Subarachnoid trabeculae: a comprehensive review of their embryology, histology, morphology, and surgical significance. World Neurosurg. 111, 279–290 (2018).
Walsh, D. R. et al. Mechanical properties of the cranial meninges: a systematic review. J. Neurotrauma 38, 1748–1761 (2021).
Bonney, S. K., Sullivan, L. T., Cherry, T. J., Daneman, R. & Shih, A. Y. Distinct features of brain perivascular fibroblasts and mural cells revealed by in vivo two-photon imaging. J. Cereb. Blood Flow. Metab. 42, 966–978 (2022).
Vanlandewijck et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018).
DeSisto, J. et al. Single-cell transcriptomic analyses of the developing meninges reveal meningeal fibroblast diversity and function. Dev. Cell 54, 43–59 (2020).
Van Hove, H. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035 (2019).
Rebejac, J. et al. Meningeal macrophages protect against viral neuroinfection. Immunity 55, 2103–2117 (2022).
Kolabas, Z. I. et al. Distinct molecular profiles of skull bone marrow in health and neurological disorders. Cell 186, 3706–3725 (2023).
Møllgård, K. et al. A mesothelium divides the subarachnoid space into functional compartments. Science 379, 84–88 (2023).
Rømer, T. B. & Benros, M. E. The discovery of a fourth meninges: potential implications for brain disorders. Brain Behav. Immun. 111, 1–3 (2023).
Zhao, H. et al. Connecting the dots: the cerebral lymphatic system as a bridge between the central nervous system and peripheral system in health and disease. Aging Dis. 15, 115–152 (2023).
Pla, V. et al. Structural characterization of SLYM—a 4th meningeal membrane. Fluids Barriers CNS 20, 93 (2023).
Siegenthaler, J. Comments on Møllgård et al. A mesothelium divides the subarachnoid space into functional compartments. Science https://doi.org/10.1126/science.adc8810 (2023).
Betsholtz, C. et al. Comments on Møllgård et al. Is the subarachnoid space divided by a newly discovered 4th layer of meninges? Science https://doi.org/10.1126/science.adc8810 (2023).
Betsholtz, C. et al. Comments on Møllgård et al. Concerns of rigor and objectivity. Science https://doi.org/10.1126/science.adc8810 (2023).
Rieck, J. & Veh, R.W. Comments on Møllgård et al. There are no separate functional compartments within the subarachnoid space. Science https://doi.org/10.1126/science.adc8810 (2023).
Pan, S. & Strahle, J. Comments on Møllgård et al. A mesothelium divides the subarachnoid space into functional compartments. Science https://doi.org/10.1126/science.adc8810 (2023).
Hartmann, K. et al. Is the central nervous system enclosed by a mesothel? Science https://doi.org/10.1126/science.adc8810 (2023).
Daneman, R. & Engelhardt, B. Brain barriers in health and disease. Neurobiol. Dis. 107, 1–3 (2017).
Louveau, A. et al. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J. Clin. Invest. 127, 3210–3219 (2017).
Virenque, A. et al. Significance of developmental meningeal lymphatic dysfunction in experimental post-traumatic injury. Brain Behav. Immun. Health 23, 100466 (2022).
Li, Z. et al. Blockade of VEGFR3 signaling leads to functional impairment of dural lymphatic vessels without affecting autoimmune neuroinflammation. Sci. Immunol. 8, eabq0375 (2023).
Antila, S. et al. Sustained meningeal lymphatic vessel atrophy or expansion does not alter Alzheimer’s disease-related amyloid pathology. Nat. Cardiovasc. Res. 3, 474–491 (2024).
Krisch, B., Leonhardt, H. & Oksche, A. The meningeal compartments of the median eminence and the cortex. A comparative analysis in the rat. Cell Tissue Res. 228, 597–640 (1983).
Farmer, D. T. et al. The developing mouse coronal suture at single-cell resolution. Nat. Commun. 12, 4797 (2021).
Rustenhoven, J. et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell 184, 1000–1016 (2021).
Wang, J., Rattner, A. & Nathans, J. Bacterial meningitis in the early postnatal mouse studied at single-cell resolution. Elife 12, e86130 (2023).
Oda, Y. & Nakanishi, I. Ultrastructure of the mouse leptomeninx. J. Comp. Neurol. 225, 448–457 (1984).
McLone, D. G. & Bondareff, W. Developmental morphology of the subarachnoid space and contiguous structures in the mouse. Am. J. Anat. 142, 273–293 (1975).
Derk, J. et al. Formation and function of the meningeal arachnoid barrier around the developing mouse brain. Dev. Cell 58, 635–644 (2023).
Shah, T. et al. Arachnoid granulations are lymphatic conduits that communicate with bone marrow and dura-arachnoid stroma. J. Exp. Med. 220, e20220618 (2023).
Brøchner, C. B., Holst, C. B. & Møllgård, K. Outer brain barriers in rat and human development. Front. Neurosci. 9, 75 (2015).
Alcolado, R., Weller, R. O., Parrish, E. P. & Garrod, D. The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol. Appl. Neurobiol. 14, 1–17 (1988).
Allen, D. J. & Low, F. N. Scanning electron microscopy of the subarachnoid space in the dog. III. Cranial levels. J. Comp. Neurol. 161, 515–539 (1975).
Weller, R. O., Sharp, M. M., Christodoulides, M., Carare, R. O. & Møllgård, K. The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS. Acta Neuropathol. 135, 363–385 (2018).
Lendahl, U., Muhl, L. & Betsholtz, C. Identification, discrimination and heterogeneity of fibroblasts. Nat. Commun. 13, 3409 (2022).
Key, A. & Retzius, G. Studien in der Anatomie des Nervensystems und des Bindegewebes (Samson & Wallin, 1875).
Li, J., Zhou, J. & Shi, Y. Scanning electron microscopy of human cerebral meningeal stomata. Ann. Anat. 178, 259–261 (1996).
Soderblom, C. et al. Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury. J. Neurosci. 33, 13882–13887 (2013).
Jones, H. E. et al. Meningeal origins and dynamics of perivascular fibroblast development on the mouse cerebral vasculature. Development 150, dev201805 (2023).
Barshes, N., Demopoulos, A. & Engelhard, H. H. Anatomy and physiology of the leptomeninges and CSF space. Cancer Treat. Res. 125, 1–16 (2005).
Fabris, G., Suar, Z. M. & Kurt, M. Micromechanical heterogeneity of the rat pia-arachnoid complex. Acta Biomater. 100, 29–37 (2019).
Niestrawska, J. A. et al. Morpho-mechanical mapping of human dura mater microstructure. Acta Biomater. 170, 86–96 (2023).
Kim, D. J. et al. Continuous monitoring of the Monro–Kellie doctrine: is it possible? J. Neurotrauma 29, 1354–1363 (2012).
Maikos, J. T., Elias, R. A. & Shreiber, D. I. Mechanical properties of dura mater from the rat brain and spinal cord. J. Neurotrauma 25, 38–51 (2008).
Li, Y., Zhang, W., Lu, Y. C. & Wu, C. W. Hyper-viscoelastic mechanical behavior of cranial pia mater in tension. Clin. Biomech. 80, 105108 (2020).
Khaing, Z. Z. et al. Temporal and spatial evolution of raised intraspinal pressure after traumatic spinal cord injury. J. Neurotrauma 34, 645–651 (2017).
Haines, D. E. On the question of a subdural space. Anat. Rec. 230, 3–21 (1991).
Orlin, J. R., Osen, K. K. & Hovig, T. Subdural compartment in pig: a morphologic study with blood and horseradish peroxidase infused subdurally. Anat. Rec. 230, 22–37 (1991).
Andres, K. H. [On the fine structure of the arachnoidea and dura mater of mammals]. Z. Zellforsch. Mikrosk. Anat. 79, 272–295 (1967).
Gow, A. et al. CNS myelin and sertoli cell tight junction strands are absent in Osp/Claudin-11 null mice. Cell 99, 649–659 (1999).
Iwamoto, N., Higashi, T. & Furuse, M. Localization of angulin-1/LSR and tricellulin at tricellular contacts of brain and retinal endothelial cells in vivo. Cell Struct. Funct. 39, 1–8 (2014).
Sohet, F. et al. LSR/angulin-1 is a tricellular tight junction protein involved in blood–brain barrier formation. J. Cell Biol. 208, 703–711 (2015).
Yasuda, K. et al. Drug transporters on arachnoid barrier cells contribute to the blood-cerebrospinal fluid barrier. Drug Metab. Dispos. 41, 923–931 (2013).
Zhang, Z., Tachikawa, M., Uchida, Y. & Terasaki, T. Drug clearance from cerebrospinal fluid mediated by organic anion transporters 1 (Slc22a6) and 3 (Slc22a8) at arachnoid membrane of rats. Mol. Pharm. 15, 911–922 (2018).
Uchida, Y. et al. A human blood-arachnoid barrier atlas of transporters, receptors, enzymes, and tight junction and marker proteins: comparison with dog and pig in absolute abundance. J. Neurochem. 161, 187–208 (2022).
Tzima, E. et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437, 426–431 (2005).
Brightman, M. W. & Reese, T. S. Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40, 648–677 (1969).
Rennels, M. L., Gregory, T. F., Blaumanis, O. R., Fujimoto, K. & Grady, P. A. Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 326, 47–63 (1985).
Hutchings, M. & Weller, R. O. Anatomical relationships of the pia mater to cerebral blood vessels in man. J. Neurosurg. 65, 316–325 (1986).
Walsh, D. R., Lynch, J. J., DT, O. C., Newport, D. T. & Mulvihill, J. J. E. Mechanical and structural characterisation of the dural venous sinuses. Sci. Rep. 10, 21763 (2020).
Saboori, P. & Sadegh, A. Histology and morphology of the brain subarachnoid trabeculae. Anat. Res. Int. 2015, 279814 (2015).
Shapiro, M. et al. Neuroanatomy of cranial dural vessels: implications for subdural hematoma embolization. J. Neurointerv. Surg. 13, 471–477 (2021).
Karatas, D. et al. A new classification of parasagittal bridging veins based on their configurations and drainage routes pertinent to interhemispheric approaches: a surgical anatomical study. J. Neurosurg. 140, 271–281 (2023).
Smyth, L. C. D. et al. Identification of direct connections between the dura and the brain. Nature 627, 165–173 (2024).
Gailloud, P. Spinal vascular anatomy. Neuroimaging Clin. N. Am. 29, 615–633 (2019).
Vajkoczy, P., Laschinger, M. & Engelhardt, B. Alpha4-integrin-VCAM-1 binding mediates G protein-independent capture of encephalitogenic T cell blasts to CNS white matter microvessels. J. Clin. Invest. 108, 557–565 (2001).
Rahimi, A. et al. The unmet global burden of cranial epidural hematomas: a systematic review and meta-analysis. Clin. Neurol. Neurosurg. 219, 107313 (2022).
Dodd, W. S. et al. Pathophysiology of delayed cerebral ischemia after subarachnoid hemorrhage: a review. J. Am. Heart Assoc. 10, e021845 (2021).
Alsbrook, D. L. et al. Pathophysiology of early brain injury and its association with delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage: a review of current literature. J. Clin. Med. 12, 1015 (2023).
Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci. Transl. Med. 4, 147ra111 (2012).
Ma, Q. et al. Rapid lymphatic efflux limits cerebrospinal fluid flow to the brain. Acta Neuropathol. 137, 151–165 (2019).
Wiig, H. & Reed, R. K. Rat brain interstitial fluid pressure measured with micropipettes. Am. J. Physiol. 244, H239–H246 (1983).
Weed, L. H. Studies on cerebro-spinal fluid. No. IV: the dual source of cerebro-spinal fluid. J. Med. Res. 31, 93–118 (1914).
Cserr, H. F. in Hydrocephalus (eds Shapiro, K. et al.) 59–68 (Raven, 1984).
Carare, R. O. et al. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol. Appl Neurobiol. 34, 131–144 (2008).
Weed, L. H. Studies on cerebro-spinal fluid. No. III: The pathways of escape from the subarachnoid spaces with particular reference to the arachnoid villi. J. Med. Res. 31, 51–91 (1914).
Yamashima, T., Kida, S. & Yamamoto, S. Ultrastructural comparison of arachnoid villi and meningiomas in man. Mod. Pathol. 1, 224–234 (1988).
Welch, K. & Friedman, V. The cerebrospinal fluid valves. Brain 83, 454–469 (1960).
Radoš, M., Živko, M., Periša, A., Orešković, D. & Klarica, M. No arachnoid granulations—no problems: number, size, and distribution of arachnoid granulations from birth to 80 years of age. Front. Aging Neurosci. 13, 698865 (2021).
Ma, Q., Ineichen, B. V., Detmar, M. & Proulx, S. T. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat. Commun. 8, 1434 (2017).
Spera, I. et al. Open pathways for cerebrospinal fluid outflow at the cribriform plate along the olfactory nerves. EBioMedicine 91, 104558 (2023).
Ma, Q., Decker, Y., Muller, A., Ineichen, B. V. & Proulx, S. T. Clearance of cerebrospinal fluid from the sacral spine through lymphatic vessels. J. Exp. Med. 216, 2492–2502 (2019).
Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).
Hsu, M. et al. Neuroinflammation creates an immune regulatory niche at the meningeal lymphatic vasculature near the cribriform plate. Nat. Immunol. 23, 581–593 (2022).
Proulx, S. T. & Engelhardt, B. Central nervous system zoning: how brain barriers establish subdivisions for CNS immune privilege and immune surveillance. J. Intern. Med. 292, 47–67 (2022).
Goldmann, T. et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 17, 797–805 (2016).
Masuda, T. et al. Specification of CNS macrophage subsets occurs postnatally in defined niches. Nature 604, 740–748 (2022).
Lodygin, D. et al. A combination of fluorescent NFAT and H2B sensors uncovers dynamics of T cell activation in real time during CNS autoimmunity. Nat. Med. 19, 784–790 (2013).
Hannocks, M. J. et al. The gelatinases, MMP-2 and MMP-9, as fine tuners of neuroinflammatory processes. Matrix Biol. 75-76, 102–113 (2019).
Marchetti, L. & Engelhardt, B. Immune cell trafficking across the blood–brain barrier in the absence and presence of neuroinflammation. Vasc. Biol. 2, H1–H18 (2020).
Mundt, S., Greter, M. & Becher, B. The CNS mononuclear phagocyte system in health and disease. Neuron 110, 3497–3512 (2022).
Gerganova, G., Riddell, A. & Miller, A. A. CNS border-associated macrophages in the homeostatic and ischaemic brain. Pharmacol. Ther. 240, 108220 (2022).
Mazzitelli, J. A. et al. Skull bone marrow channels as immune gateways to the central nervous system. Nat. Neurosci. 26, 2052–2062 (2023).
Schafflick, D. et al. Single-cell profiling of CNS border compartment leukocytes reveals that B cells and their progenitors reside in non-diseased meninges. Nat. Neurosci. 24, 1225–1234 (2021).
Herisson, F. et al. Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat. Neurosci. 21, 1209–1217 (2018).
Mazzitelli, J. A. et al. Cerebrospinal fluid regulates skull bone marrow niches via direct access through dural channels. Nat. Neurosci. 25, 555–560 (2022).
Uchida, Y. et al. Involvement of Claudin-11 in disruption of blood–brain, –spinal cord, and –arachnoid barriers in multiple sclerosis. Mol. Neurobiol. 56, 2039–2056 (2019).
Zhang, Y. et al. Mucosal-associated invariant T cells restrict reactive oxidative damage and preserve meningeal barrier integrity and cognitive function. Nat. Immunol. 23, 1714–1725 (2022).
Santisteban, M. M. et al. Meningeal interleukin-17-producing T cells mediate cognitive impairment in a mouse model of salt-sensitive hypertension. Nat. Neurosci. 27, 63–77 (2024).
Willis, T. Cerebri Anatome, Cui Accessit Nervorum Descriptio et Usus (J. Flesher, 1664).
Wiggers, A. et al. Brain barriers and their potential role in migraine pathophysiology. J. Headache Pain. 23, 16 (2022).
Kuburas, A. & Russo, A. F. Shared and independent roles of CGRP and PACAP in migraine pathophysiology. J. Headache Pain. 24, 34 (2023).
Noseda, R., Melo-Carrillo, A., Nir, R. R., Strassman, A. M. & Burstein, R. Non-trigeminal nociceptive innervation of the posterior dura: implications to occipital headache. J. Neurosci. 39, 1867–1880 (2019).
Groen, G. J., Baljet, B. & Drukker, J. The innervation of the spinal dura mater: anatomy and clinical implications. Acta Neurochir. 92, 39–46 (1988).
Iyengar, S., Johnson, K. W., Ossipov, M. H. & Aurora, S. K. CGRP and the trigeminal system in migraine. Headache 59, 659–681 (2019).
Pinho-Ribeiro, F. A. et al. Bacteria hijack a meningeal neuroimmune axis to facilitate brain invasion. Nature 615, 472–481 (2023).
Blaeser, A. S. et al. Trigeminal afferents sense locomotion-related meningeal deformations. Cell Rep. 41, 111648 (2022).
Mikhailov, N. et al. Mechanosensitive meningeal nociception via Piezo channels: implications for pulsatile pain in migraine? Neuropharmacology 149, 113–123 (2019).
Andres, K. H., von During, M., Muszynski, K. & Schmidt, R. F. Nerve fibres and their terminals of the dura mater encephali of the rat. Anat. Embryol. 175, 289–301 (1987).
Vandenabeele, F., Creemers, J. & Lambrichts, I. Ultrastructure of the human spinal arachnoid mater and dura mater. J. Anat. 189, 417–430 (1996).
Momose, Y., Kohno, K. & Ito, R. Ultrastructural study on the meninx of the goldfish brain. J. Comp. Neurol. 270, 327–336 (1988).
Rodriguez-Peralta, L. A. The role of the meningeal tissues in the hematoencephalic barrier. J. Comp. Neurol. 107, 455–473 (1957).
Krisch, B., Leonhardt, H. & Oksche, A. Compartments and perivascular arrangement of the meninges covering the cerebral cortex of the rat. Cell Tissue Res. 238, 459–474 (1984).
Zhang, E. T., Inman, C. B. & Weller, R. O. Interrelationships of the pia mater and the perivascular (Virchow–Robin) spaces in the human cerebrum. J. Anat. 170, 111–123 (1990).
Hannocks, M. -J. et al. Molecular characterization of perivascular drainage pathways in the murine brain. J. Cereb. Blood Flow. Metab. 38, 669–686 (2018).
Petrova, T. V. et al. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J. 21, 4593–4599 (2002).
Lu, M. H., Huang, C. C., Pan, M. R., Chen, H. H. & Hung, W. C. Prospero homeobox 1 promotes epithelial-mesenchymal transition in colon cancer cells by inhibiting E-cadherin via miR-9. Clin. Cancer Res. 18, 6416–6425 (2012).
Mestre, H. et al. Periarteriolar spaces modulate cerebrospinal fluid transport into brain and demonstrate altered morphology in aging and Alzheimer’s disease. Nat. Commun. 13, 3897 (2022).
Schiavinato, A., Przyklenk, M., Kobbe, B., Paulsson, M. & Wagener, R. Collagen type VI is the antigen recognized by the ER-TR7 antibody. Eur. J. Immunol. 51, 2345–2347 (2021).
Holter, K. E. et al. Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow. Proc. Natl Acad. Sci. USA 114, 9894–9899 (2017).
Abbott, N. J., Pizzo, M. E., Preston, J. E., Janigro, D. & Thorne, R. G. The role of brain barriers in fluid movement in the CNS: is there a ‘glymphatic’ system? Acta Neuropathol. 135, 387–407 (2018).
Hladky, S. B. & Barrand, M. A. The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS 19, 9 (2022).
Zakharov, A. et al. Integrating the roles of extracranial lymphatics and intracranial veins in cerebrospinal fluid absorption in sheep. Microvasc. Res. 67, 96–104 (2004).
Flexner, L. B. Some problems of the origin, circulation and absorption of the cerebrospinal fluid. Q. Rev. Biol. 8, 397–422 (1933).
Ineichen, B. V. et al. Perivascular spaces and their role in neuroinflammation. Neuron 110, 3566–3581 (2022).
Nicholas, D. S. & Weller, R. O. The fine anatomy of the human spinal meninges. A light and scanning electron microscopy study. J. Neurosurg. 69, 276–282 (1988).
Wolburg, H. & Mack, A. F. Comment on the topology of mammalian blood–cerebrospinal fluid barrier. Neurol. Psych. Brain Res. 20, 70–72 (2014).
Hartmann, K., Stein, K.-P., Neyazi, B. & Sandalcioglu, I. E. First in vivo visualization of the human subarachnoid space and brain cortex via optical coherence tomography. Ther. Adv. Neurol. Disord. 12, 1756286419843040 (2019).
Ringstad, G. & Eide, P. K. Cerebrospinal fluid tracer efflux to parasagittal dura in humans. Nat. Commun. 11, 354 (2020).
Eide, P. K. et al. Clinical application of intrathecal gadobutrol for assessment of cerebrospinal fluid tracer clearance to blood. JCI Insight 6, e147063 (2021).
Krisch, B. Ultrastructure of the meninges at the site of penetration of veins through the dura mater, with particular reference to Pacchionian granulations. Investigations in the rat and two species of New-World monkeys (Cebus apella, Callitrix jacchus). Cell Tissue Res. 251, 621–631 (1988).
Cai, R. et al. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull–meninges connections. Nat. Neurosci. 22, 317–327 (2019).
Pulous, F. E. et al. Cerebrospinal fluid can exit into the skull bone marrow and instruct cranial hematopoiesis in mice with bacterial meningitis. Nat. Neurosci. 25, 567–576 (2022).
Phoenix, T. N. et al. Medulloblastoma genotype dictates blood–brain barrier phenotype. Cancer Cell 29, 508–522 (2016).
Acknowledgements
This work was supported in part by funding from the Swedish Research Council (2015-00550, to C.B.); Swedish Cancer Society (2018/449, 2018/1154 and 211714Pj, to C.B.); Knut and Alice Wallenberg Foundation (2020.0057, to C.B.); Swedish Brain Foundation (ALZ2019-0130 and ALZ2022-0005, to C.B.); Erling-Persson Family Foundation (to C.B.); Leducq Foundation (22CVD01 and 23CVD02, to C.B.) Fidelity Bermuda Foundation (to S.T.P. and B.E.); Swiss National Science Foundation (310030_189080, to B.E.; 310030_189226, to S.T.P.; and CRSII5_213535, to S.T.P. and B.E.); Republic of Korea Ministry of Science and Information and Communication Technology to the Institute for Basic Science (IBS-R025-D1-2015, to G.Y.K.); National Heart, Lung, and Blood Institute grants (R01 HL143896, R01 HL059157 and R01 HL127402, to D.M.D.); and National Institute of Neurological Disorders and Stroke grant (R01 NS098273, to J.S.) from the US National Institutes of Health. We thank H. J. Shin for drawing Fig. 1.
Author information
Authors and Affiliations
Contributions
C.B., B.E., G.Y.K., D.M.D., S.T.P. and J.S. conceived the theme, scope and structure of the review, wrote the manuscript and drafted the figures.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Neuroscience thanks Ali Erturk, Axel Montagne, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Betsholtz, C., Engelhardt, B., Koh, G.Y. et al. Advances and controversies in meningeal biology. Nat Neurosci 27, 2056–2072 (2024). https://doi.org/10.1038/s41593-024-01701-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41593-024-01701-8
This article is cited by
-
CSF outflow from the human spinal canal: preliminary results from an anatomical specimen-based model
Fluids and Barriers of the CNS (2025)
-
Spatiotemporal dynamic changes of meningeal microenvironment influence meningeal lymphatic function following subarachnoid hemorrhage: from inflammatory response to tissue remodeling
Journal of Neuroinflammation (2025)
-
Immune control of brain physiology
Nature Reviews Immunology (2025)
-
Increased CSF drainage by non-invasive manipulation of cervical lymphatics
Nature (2025)