Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Broadly neutralizing antibody cocktails targeting Nipah virus and Hendra virus fusion glycoproteins

Abstract

Hendra virus (HeV) and Nipah virus (NiV) are henipaviruses (HNVs) causing respiratory illness and severe encephalitis in humans, with fatality rates of 50–100%. There are no licensed therapeutics or vaccines to protect humans. HeV and NiV use a receptor-binding glycoprotein (G) and a fusion glycoprotein (F) to enter host cells. HNV F and G are the main targets of the humoral immune response, and the presence of neutralizing antibodies is a correlate of protection against NiV and HeV in experimentally infected animals. We describe here two cross-reactive F-specific antibodies, 1F5 and 12B2, that neutralize NiV and HeV through inhibition of membrane fusion. Cryo-electron microscopy structures reveal that 1F5 and 12B2 recognize distinct prefusion-specific, conserved quaternary epitopes and lock F in its prefusion conformation. We provide proof-of-concept for using antibody cocktails for neutralizing NiV and HeV and define a roadmap for developing effective countermeasures against these highly pathogenic viruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The 12B2 and 1F5 Abs cross-react with NiV F and HeV F and neutralize authentic NiV and HeV by preventing membrane fusion.
Fig. 2: The 12B2 Ab recognizes a conserved quaternary epitope on the NiV F glycoprotein.
Fig. 3: The 1F5 Ab recognizes a conserved quaternary epitope on the HeV glycoprotein.
Fig. 4: Formulation of F-targeted Abs cocktails against NiV and HeV.

Similar content being viewed by others

Data availability

The cryo-EM maps and atomic models have been deposited to the Electron Microscopy Data Bank and Protein Data Bank with accession numbers EMD-22884/PDB 7KI4 (NiV F–12B2) and EMD-22885/PDB 7KI6 (HeV F–1F5). Sharing of reagents will proceed through a Materials Transfer Agreement.

References

  1. Eaton, B. T., Broder, C. C., Middleton, D. & Wang, L. F. Hendra and Nipah viruses: different and dangerous. Nat. Rev. Microbiol. 4, 23–35 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Luby, S. P. & Gurley, E. S. Epidemiology of Henipavirus disease in humans. Curr. Top. Microbiol. Immunol. 359, 25–40 (2012).

    PubMed  Google Scholar 

  3. Gurley, E. S. et al. Convergence of humans, bats, trees, and culture in Nipah virus transmission, Bangladesh. Emerg. Infect. Dis. 23, 1446–1453 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Halpin, K. et al. Pteropid bats are confirmed as the reservoir hosts of henipaviruses: a comprehensive experimental study of virus transmission. Am. J. Tropical Med. Hyg. 85, 946–951 (2011).

    Article  Google Scholar 

  5. Clayton, B. A. Nipah virus: transmission of a zoonotic paramyxovirus. Curr. Opin. Virol. 22, 97–104 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Pernet, O. et al. Evidence for henipavirus spillover into human populations in Africa. Nat. Commun. 5, 5342 (2014).

    Article  PubMed  Google Scholar 

  7. Navaratnarajah, C. K., Generous, A. R., Yousaf, I. & Cattaneo, R. Receptor-mediated cell entry of paramyxoviruses: mechanisms, and consequences for tropism and pathogenesis. J. Biol. Chem. 295, 2771–2786 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bowden, T. A. et al. Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2. Nat. Struct. Mol. Biol. 15, 567–572 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Xu, K. et al. Host cell recognition by the henipaviruses: crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3. Proc. Natl Acad. Sci. USA 105, 9953–9958 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Negrete, O. A. et al. EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature 436, 401–405 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Bonaparte, M. I. et al. Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proc. Natl Acad. Sci. USA 102, 10652–10657 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Negrete, O. A. et al. Two key residues in EphrinB3 are critical for its use as an alternative receptor for Nipah virus. PLoS Pathog. 2, e7 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Bishop, K. A. et al. Identification of Hendra virus G glycoprotein residues that are critical for receptor binding. J. Virol. 81, 5893–5901 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pager, C. T. & Dutch, R. E. Cathepsin L is involved in proteolytic processing of the Hendra virus fusion protein. J. Virol. 79, 12714–12720 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pager, C. T., Craft, W. W., Patch, J. & Dutch, R. E. A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L. Virology 346, 251–257 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Wong, J. J. W., Paterson, R. G., Lamb, R. A. & Jardetzky, T. S. Structure and stabilization of the Hendra virus F glycoprotein in its prefusion form. Proc. Natl Acad. Sci. USA 113, 1056–1061 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Xu, K. et al. Crystal structure of the pre-fusion Nipah virus fusion glycoprotein reveals a novel hexamer-of-trimers assembly. PLoS Pathogens 11, e1005322 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Chan, Y.-P. et al. Biochemical, conformational, and immunogenic analysis of soluble trimeric forms of henipavirus fusion glycoproteins. J. Virol. 86, 11457–11471 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, Q. et al. Nipah virus attachment glycoprotein stalk C-terminal region links receptor binding to fusion triggering. J. Virol. 89, 1838–1850 (2015).

    Article  PubMed  CAS  Google Scholar 

  20. Liu, Q. et al. Unraveling a three-step spatiotemporal mechanism of triggering of receptor-induced Nipah virus fusion and cell entry. PLoS Pathogens 9, e1003770 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Connolly, S. A., Leser, G. P., Yin, H. S., Jardetzky, T. S. & Lamb, R. A. Refolding of a paramyxovirus F protein from prefusion to postfusion conformations observed by liposome binding and electron microscopy. Proc. Natl Acad. Sci. USA 103, 17903–17908 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wong, J. J. W. et al. Monomeric ephrinB2 binding induces allosteric changes in Nipah virus G that precede its full activation. Nat. Commun. 8, 781 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Yin, H. S., Paterson, R. G., Wen, X., Lamb, R. A. & Jardetzky, T. S. Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein. Proc. Natl Acad. Sci. USA 102, 9288–9293 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bossart, K. N. et al. A Hendra virus G glycoprotein subunit vaccine protects African green monkeys from Nipah virus challenge. Sci. Transl. Med. 4, 146ra107 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Bossart, K. N. et al. A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute Nipah virus infection. PLoS Pathogens 5, e1000642 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Geisbert, T. W. et al. Therapeutic treatment of Nipah virus infection in nonhuman primates with a neutralizing human monoclonal antibody. Sci. Trans. Med. 6, 242ra82 (2014).

    Article  CAS  Google Scholar 

  27. Zhu, Z. et al. Exceptionally potent cross‐reactive neutralization of nipah and hendra viruses by a human monoclonal antibody. J. Infect. Dis. 197, 846–853 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Zhu, Z. et al. Potent neutralization of Hendra and Nipah viruses by human monoclonal antibodies. J. Virol. 80, 891–899 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu, K. et al. Crystal structure of the Hendra virus attachment G glycoprotein bound to a potent cross-reactive neutralizing human monoclonal antibody. PLoS Pathogens 9, e1003684 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Playford, E. G. et al. Safety, tolerability, pharmacokinetics, and immunogenicity of a human monoclonal antibody targeting the G glycoprotein of henipaviruses in healthy adults: a first-in-human, randomised, controlled, phase 1 study. Lancet Infect. Dis. 20, 445–454 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Dang, H. V. et al. An antibody against the F glycoprotein inhibits Nipah and Hendra virus infections. Nat. Struct. Mol. Biol. 26, 980–987 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mire, C. E. et al. A cross-reactive humanized monoclonal antibody targeting fusion glycoprotein function protects ferrets against lethal Nipah virus and Hendra virus infection. J. Infect. Dis. 221, S471–S479 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Drexler, J. F. et al. Bats host major mammalian paramyxoviruses. Nat. Commun. 3, 796 (2012).

    Article  PubMed  CAS  Google Scholar 

  34. Wu, Z. et al. Novel Henipa-like virus, Mojiang paramyxovirus, in rats, China, 2012. Emerg. Infect. Dis. 20, 1064–1066 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Laing, E. D. et al. Structural and functional analyses reveal promiscuous and species specific use of ephrin receptors by Cedar virus. Proc. Natl Acad. Sci. USA 116, 20707–20715 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kondo, N., Miyauchi, K., Meng, F., Iwamoto, A. & Matsuda, Z. Conformational changes of the HIV-1 envelope protein during membrane fusion are inhibited by the replacement of its membrane-spanning ___domain. J. Biol. Chem. 285, 14681–14688 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tortorici, M. A. et al. Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science https://doi.org/10.1126/science.abe3354 (2020).

  38. Pinto, D. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583, 290–295 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Walls, A. C. et al. Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. Cell 176, 1026–1039.e15 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Borst, A. J. et al. Germline VRC01 antibody recognition of a modified clade C HIV-1 envelope trimer and a glycosylated HIV-1 gp120 core. Elife 7, e37688 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Stewart-Jones, G. B. E. et al. Trimeric HIV-1-Env structures define glycan shields from clades A, B, and G. Cell 165, 813–826 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. West, B. R. et al. Structural basis of pan-Ebolavirus neutralization by a human antibody against a conserved, yet cryptic epitope. Mbio 9, e01674–18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pascal, K. E. et al. Development of clinical-stage human monoclonal antibodies that treat advanced ebola virus disease in nonhuman primates. J. Infect. Dis. 218, S612–S626 (2018).

    Article  PubMed  Google Scholar 

  44. Mulangu, S. et al. A randomized, controlled trial of ebola virus disease therapeutics. N. Engl. J. Med. 381, 2293–2303 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Bornholdt, Z. A. et al. A two-antibody pan-Ebolavirus cocktail confers broad therapeutic protection in ferrets and nonhuman primates. Cell Host Microbe 25, 49–58.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wec, A. Z. et al. Development of a human antibody cocktail that deploys multiple functions to confer pan-ebolavirus protection. Cell Host Microbe 25, 39–48.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Logtenberg, T. Antibody cocktails: next-generation biopharmaceuticals with improved potency. Trends Biotechnol. 25, 390–394 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Chao, T.-Y. et al. SYN023, a novel humanized monoclonal antibody cocktail, for post-exposure prophylaxis of rabies. PLoS Negl. Trop. Dis. 11, e0006133 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Nagarajan, T. et al. in Human Antibody Therapeutics for Viral Disease (ed. Dessain, S. K.) 67–101 (Springer, 2008); https://doi.org/10.1007/978-3-540-72146-8_3

  50. Amaya, M. & Broder, C. C. Vaccines to emerging viruses: Nipah and Hendra. Annu. Rev. Virol. 7, 447–473 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Avanzato, V. A. et al. A structural basis for antibody-mediated neutralization of Nipah virus reveals a site of vulnerability at the fusion glycoprotein apex. Proc. Natl Acad. Sci. USA 116, 25057–25067 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Earl, P. L., Broder, C. C., Doms, R. W. & Moss, B. Epitope map of human immunodeficiency virus type 1 gp41 derived from 47 monoclonal antibodies produced by immunization with oligomeric envelope protein. J. Virol. 71, 2674–2684 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huynh-Do, U. et al. Ephrin-B1 transduces signals to activate integrin-mediated migration, attachment and angiogenesis. J. Cell Sci. 115, 3073–3081 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lander, G. C. et al. Appion: an integrated, database-driven pipeline to facilitate EM image processing. J. Struct. Biol. 166, 95–102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, K. GCTF: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 6, 5–17 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Scheres, S. H. W. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Goddard, T. D., Huang, C. C. & Ferrin, T. E. Visualizing density maps with UCSF Chimera. J. Struct. Biol. 157, 281–287 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Brown, A. et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. D Biol. Crystallogr. 71, 136–153 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dimaio, F. et al. Atomic-accuracy models from 4.5-Å cryo-electron microscopy data with density-guided iterative local refinement. Nat. Methods 12, 361–365 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. DiMaio, F., Leaver-Fay, A., Bradley, P., Baker, D. & André, I. Modeling symmetric macromolecular structures in Rosetta3. PLoS ONE 6, e20450 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang, R. Y. R. et al. Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta. Elife 5, e17219 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Frenz, B. et al. Automatically fixing errors in glycoprotein structures with Rosetta. Structure 27, 134–139.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Barad, B. A. et al. EMRinger: side chain–directed model and map validation for 3D cryo-electron microscopy. Nat. Methods 12, 943–946 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Agirre, J. et al. Privateer: software for the conformational validation of carbohydrate structures. Nat. Struct. Mol. Biol. 22, 833–834 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Laing, E. D. et al. Rescue and characterization of recombinant cedar virus, a non-pathogenic Henipavirus species. Virol. J. 15, 56 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Mishra, A. K. et al. Structure and characterization of Crimean-Congo hemorrhagic fever virus GP38. J. Virol. https://doi.org/10.1128/jvi.02005-19 (2020).

  77. Ferrara, F. & Temperton, N. Pseudotype neutralization assays: from laboratory bench to data analysis. Methods Protoc. 1, 8 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  78. Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Voss, N. R., Yoshioka, C. K., Radermacher, M., Potter, C. S. & Carragher, B. DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy. J. Struct. Biol. 166, 205–213 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Institute of Allergy and Infectious Diseases (grant nos. DP1AI158186 and HHSN272201700059C to D.V. and grant nos. AI054715, AI077995 and AI142764 to C.C.B.), the National Institute of General Medical Sciences (grant no. GM120553 to D.V.), an Investigators in the Pathogenesis of Infectious Disease Award from the Burroughs Wellcome Fund (D.V.), a Pew Biomedical Scholars Award (D.V.) and the University of Washington Arnold and Mabel Beckman cryo-EM center. Operations support of the Galveston National Laboratory was supported by NIAID/NIH grant no. UC7AI094660.

Author information

Authors and Affiliations

Authors

Contributions

H.V.D., R.W.C., T.W.G., C.C.B. and D.V. designed the experiments. A.S.D., L.Y. and Y.-P.C. designed and cloned the HeV F and NiV F constructs and produced and isolated 1F5, 5B3 and 12B2 mouse hybridoma and mAbs. H.V.D. expressed and purified the soluble HNV F proteins used in this study. B.R.W., L.Z. and Z.A.B. performed humanization of murine mAbs and produced the humanized mAbs. H.V.D. performed IgG fragmentation and binding assays. H.V.D. conducted the cryo-EM sample preparation, data collection and data processing. H.V.D. and D.V. built and refined the atomic models. R.W.C. carried out the neutralization assays. V.B., C.M. and T.W.G. performed escape mutant analyses. C.K.N. carried out the membrane fusion inhibition assay. M.A. prepared a stable cell line. H.V.D., R.W.C., S.C.D.S., C.C.B. and D.V. analyzed the data. H.V.D. and D.V. prepared the manuscript with input from all authors.

Corresponding author

Correspondence to David Veesler.

Ethics declarations

Competing interests

Z.A.B., B.R.W. and L.Z. are employees and shareholders in Mapp Biopharmaceutical Inc., and L.Z. is a co-owner of Mapp Biopharmaceutical, Inc. D.V. is a consultant for Vir Biotechnology Inc. The Veesler laboratory has received an unrelated sponsored research agreement from Vir Biotechnology Inc. The other authors declare no competing interests.

Additional information

Peer review information Nature Structural & Molecular Biology thanks Dimiter Dimitrov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Beth Moorefield was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Cryo-EM characterization of NiV F in complex with the 12B2 Fab fragment.

a, Representative micrograph. Scale bar, 100 nm. b, Reference-free 2D class averages. Scale bar, 100 Å. c, Gold-standard (black) and map-model (red) Fourier shell correlation curves. Dotted line indicates the 0.143 and 0.5 thresholds. d, Two orthogonal views of the cryo-EM map colored by local resolution estimated using cryoSPARC. e, Cryo-EM data processing flow chart. Selected groups of particles at different steps are boxed. NUR: Non-Uniform refinement.

Extended Data Fig. 2 Binding of the 12B2 Fab fragment to immobilized NiV F S69A ectodomain (N67 glycan mutant) analyzed by biolayer interferometry.

Raw data are colored according to the key and fitted curves are displayed as black dashed lines. The vertical dotted lines correspond to the transition between the association and dissociation phases.

Extended Data Fig. 3 CryoEM characterization of HeV F in complex with the 1F5 Fab fragment.

a, Representative micrograph. Scale bar, 100 nm. b, Reference-free 2D class averages. Scale bar, 100 Å. c, Gold-standard (black) and map-model (red) Fourier shell correlation curves. Dotted line indicates the 0.143 and 0.5 thresholds. d, Two orthogonal views of the cryo-EM map colored by local resolution estimated using cryoSPARC. e, Cryo-EM data processing flow chart. Selected groups of particles at different steps are boxed. NUR: Non-Uniform refinement.

Extended Data Fig. 4 EM characterization of the negatively stained ternary complex of NiV F/12B2/5B3 and NiV F/12B2/1F5.

a,c, A representative micrograph and 2D class averages of NiV F/12B2/5B3 complex (a) and NiV F/12B2/1F5 complex (c) from the corresponding negative staining dataset of NiV F incubated with excess of 12B2/1F5 Fabs or 12B2/5B3 Fabs (See Materials & Methods). Micrograph scale bar: 100 nm; 2D class average scale bar: 100Å. b,d, Three-dimensional reconstructions of the ternary complex of NiV F/12B2/5B3 (b) and NiV F/12B2/1F5 (d), representing a complex with the highest stoichiometry of Fabs:NiV F from the corresponding negative staining dataset.

Extended Data Fig. 5 Comparison of the footprints of the 12B2 and the 1F5 antibody on prefusion F and postfusion F and among HNV F proteins.

a, b, Molecular surface representation of the NiV F prefusion trimer (a) and the homology model of NiV F postfusion (b) showing the 12B2 footprint in orange. c-d, Molecular surface representation of the HeV F prefusion trimer (c) and the homology model of NiV F postfusion (d) showing the 1F5 footprint in purple. The homology model of NiV F postfusion in (b) and (d) was obtained by threading the NiV F sequence onto the human parainfluenza postfusion F structure23 (PDB: 1ZTM). e, Sequence alignment of HNV F glycoproteins (NiV, HeV, GhV: Ghana bat virus; CedV: Cedar virus; MojVF: Mojiang virus). Residues on HNV F constituting the 12B2 or 1F5 epitope are denoted with an orange or purple asterisk, respectively.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, H.V., Cross, R.W., Borisevich, V. et al. Broadly neutralizing antibody cocktails targeting Nipah virus and Hendra virus fusion glycoproteins. Nat Struct Mol Biol 28, 426–434 (2021). https://doi.org/10.1038/s41594-021-00584-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-021-00584-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing