Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Plant sperm cell sequencing for genome phasing and determination of meiotic crossover points

Abstract

Haplotype phasing represents a pivotal procedure in genome analysis, entailing the identification of specific genetic variant combinations on each chromosome. Achieving chromosome-level genome phasing constitutes a considerable challenge, particularly in organisms with large and complex genomes. To address this challenge, we have developed a robust, gamete cell-based phasing pipeline, including wet-laboratory processes for plant sperm cell isolation, short-read sequencing and a bioinformatics workflow to generate chromosome-level phasing. The bioinformatics workflow is applicable for both plant and other sperm cells, for example, those of mammals. Our pipeline ensures high-quality single-nucleotide polymorphism (SNP) calling for each sperm cell and the subsequent construction of a high-density genetic map. The genetic map facilitates accurate chromosome-level genome phasing, enables crossover event detection and could be used to correct potential assembly errors. Our bioinformatics pipeline runs on a Linux system and most of its steps can be executed in parallel, expediting the analysis process. The entire workflow can be performed over the course of 1 d. We provide a practical example from our previous research using this protocol and provide the whole bioinformatics pipeline as a Docker image to ensure its easy adaptability to other studies.

Key points

  • This protocol describes a method for phasing plant genomes, using gamete cells isolated from pollen to enable chromosome-level phasing and crossover detection.

  • The protocol enables phasing without the need for Hi-C data or sequencing large plant populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Main workflow of the phasing pipeline.
Fig. 2: Haplotype phasing and crossover detection of the pipeline.

Similar content being viewed by others

Data availability

The test data described in this protocol are available at https://figshare.com/articles/dataset/Example_data_for_PollenSeq/25272493. Contig-level test genome is available at https://figshare.com/articles/dataset/test_contig-level_genome_for_PollenSeq/26089288. Source data for Fig. 2 can be downloaded from https://figshare.com/articles/dataset/source_data_for_Fig2_a-b/26088184, https://figshare.com/articles/dataset/Source_data_for_Fig2_c/26088187 and https://figshare.com/articles/dataset/Source_data_for_Fig_2d/26088193.

Code availability

Scripts shown here are available from github at https://github.com/zwycooky/PollenSeq.

References

  1. Garg, S. Computational methods for chromosome-scale haplotype reconstruction. Genome Biol. 22, 101 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Leitwein, M., Duranton, M., Rougemont, Q., Gagnaire, P.-A. & Bernatchez, L. Using haplotype information for conservation genomics. Trends Ecol. Evo. 35, 245–258 (2020).

    Article  Google Scholar 

  3. Browning, B. L. & Browning, S. R. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am. J. Hum. Genet. 84, 210–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. Nat. Rev. Genet. 11, 499–511 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Bhat, J. A., Yu, D., Bohra, A., Ganie, S. A. & Varshney, R. K. Features and applications of haplotypes in crop breeding. Commun. Biol. 4, 1266 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vonholdt, B. M. et al. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature 464, 898–902 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao, J., Sauvage, C., Bitton, F. & Causse, M. Multiple haplotype-based analyses provide genetic and evolutionary insights into tomato fruit weight and composition. Horticul. Res. 9, uhab009 (2022).

    Article  CAS  Google Scholar 

  8. Blanca, J. et al. Haplotype analyses reveal novel insights into tomato history and domestication driven by long-distance migrations and latitudinal adaptations. Hortic. Res. 9, uhac030 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang, J. et al. Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nat. Plants 3, 696–703 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Yan, M. et al. Haplotype-based phylogenetic analysis and population genomics uncover the origin and domestication of sweetpotato. Mol. Plant 17, 277–296 (2024).

    Article  CAS  PubMed  Google Scholar 

  11. Todesco, M. et al. Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature 584, 602–607 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, F. et al. The landscape of gene–CDS–haplotype diversity in rice: Properties, population organization, footprints of domestication and breeding, and implications for genetic improvement. Mol., Plant 14, 787–804 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Naj, A. C. Genotype imputation in genome‐wide association studies. Curr. Protoc. Hum. Genet. 102, e84 (2019).

    Article  PubMed  Google Scholar 

  14. Liu, F., Jiang, Y., Zhao, Y., Schulthess, A. W. & Reif, J. C. Haplotype-based genome-wide association increases the predictability of leaf rust (Puccinia triticina) resistance in wheat. J. Exp. Bot. 71, 6958–6968 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Wu, X. et al. Prioritized candidate causal haplotype blocks in plant genome-wide association studies. PLoS Genet. 18, e1010437 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dong, X. et al. Dynamic and antagonistic allele-specific epigenetic modifications controlling the expression of imprinted genes in maize endosperm. Mol. Plant 10, 442–455 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Shao, L. et al. Patterns of genome-wide allele-specific expression in hybrid rice and the implications on the genetic basis of heterosis. Proc. Natl Acad. Sci. USA 116, 5653–5658 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guk, J. Y., Jang, M. J., Choi, J. W., Lee, Y. M. & Kim, S. De novo phasing resolves haplotype sequences in complex plant genomes. Plant Biotechnol. J. 20, 1031–1041 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mansfeld, B. N. et al. A haplotype resolved chromosome‐scale assembly of North American wild apple Malus fusca and comparative genomics of the fire blight Mfu10 locus. Plant J. 116, 989–1002 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Han, X. et al. Two haplotype-resolved, gap-free genome assemblies for Actinidia latifolia and Actinidia chinensis shed light on the regulatory mechanisms of vitamin C and sucrose metabolism in kiwifruit. Mol. Plant 16, 452–470 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21, 245 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Browning, S. R. & Browning, B. L. Haplotype phasing: existing methods and new developments. Nat. Rev. Genet. 12, 703–714 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schrinner, S. D. et al. Haplotype threading: accurate polyploid phasing from long reads. Genome Biol. 21, 252 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kuleshov, V. et al. Whole-genome haplotyping using long reads and statistical methods. Nat. Biotechnol. 32, 261–266 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Browning, B. L., Tian, X., Zhou, Y. & Browning, S. R. Fast two-stage phasing of large-scale sequence data. Am. J. Hum. Genet. 108, 1880–1890 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, W. et al. A phased genome based on single sperm sequencing reveals crossover pattern and complex relatedness in tea plants. Plant J. l 105, 197–208 (2021).

    Article  CAS  Google Scholar 

  28. Martin, M. et al. WhatsHap: weighted haplotype assembly for future-generation sequencing reads. J. Comput. Biol. 22, 498–509 (2015).

    Article  Google Scholar 

  29. Duan, H. et al. Physical separation of haplotypes in dikaryons allows benchmarking of phasing accuracy in Nanopore and HiFi assemblies with Hi-C data. Genome Biol. 23, 84 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kronenberg, Z. N. et al. Extended haplotype-phasing of long-read de novo genome assemblies using Hi-C. Nat. Commun. 12, 935 (2021).

    Article  Google Scholar 

  31. Cheng, H. et al. Haplotype-resolved assembly of diploid genomes without parental data. Nat. Biotechnol. 40, 1332–1335 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, X., Zhang, S., Zhao, Q., Ming, R. & Tang, H. Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. Nat. Plants 5, 833–845 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Li, X., Li, L. & Yan, J. Dissecting meiotic recombination based on tetrad analysis by single-microspore sequencing in maize. Nat. Commun. 6, 6648 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Luo, C., Li, X., Zhang, Q. & Yan, J. Single gametophyte sequencing reveals that crossover events differ between sexes in maize. Nat. Commun. 10, 785 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shi, D. et al. Single-pollen-cell sequencing for gamete-based phased diploid genome assembly in plants. Genome Res. 29, 1889–1899 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Campoy, J. A. et al. Gamete binning: chromosome-level and haplotype-resolved genome assembly enabled by high-throughput single-cell sequencing of gamete genomes. Genome Biol. 21, 306 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun, H. et al. Linked-read sequencing of gametes allows efficient genome-wide analysis of meiotic recombination. Nat. Commun. 10, 4310 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang, W. et al. Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties. Nat. Commun. 11, 3719 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou, Q. et al. Haplotype-resolved genome analyses of a heterozygous diploid potato. Nat. Genet. 52, 1018–1023 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Serra Mari, R. et al. Haplotype-resolved assembly of a tetraploid potato genome using long reads and low-depth offspring data. Genome Biol. 25, 26 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun, H. et al. Chromosome-scale and haplotype-resolved genome assembly of a tetraploid potato cultivar. Nat. Genet. 54, 342–348 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rommel Fuentes, R. et al. Meiotic recombination profiling of interspecific hybrid F1 tomato pollen by linked read sequencing. Plant J. 102, 480–492 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Dreissig, S., Fuchs, J., Himmelbach, A., Mascher, M. & Houben, A. Sequencing of single pollen nuclei reveals meiotic recombination events at megabase resolution and circumvents segregation distortion caused by postmeiotic processes. Front. Plant Sci. 8, 1620 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li, R. et al. Inference of chromosome-length haplotypes using genomic data of three or a few more single gametes. Mol. Biol. Evol. 37, 3684–3698 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lyu, R. et al. sgcocaller and comapr: personalised haplotype assembly and comparative crossover map analysis using single-gamete sequencing data. Nucleic Acids Res. 50, e118–e118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rowan, B. A., Patel, V., Weigel, D. & Schneeberger, K. Rapid and inexpensive whole-genome genotyping-by-sequencing for crossover localization and fine-scale genetic mapping. G3 5, 385–398 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (3211101118) NSFC-DFG collaborative project, the National Key R&D Program of China (2022YFF1003103), Fundamental Research Funds for the Central Universities (2662023PY011) to W.W., Deutsche Forschungsgemeinschaft (DFG)-Project number 468870408 to B.U. and A.R.F., and China Postdoctoral Innovation Program (BX20220127) to W.Z.

Author information

Authors and Affiliations

Authors

Contributions

W.W., B.U. and A.R.F. conceived and managed the project, and drafted the first version of the manuscript. W.Z. and A.T. prepared the bioinformatics section. X.J. prepared the wet-laboratory section. W.Z., W.W., B.U., A.R.F. and J.Y. revised and edited the manuscript.

Corresponding authors

Correspondence to Alisdair R. Fernie, Björn Usadel or Weiwei Wen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewer(s) for their contribution to the peer review of this process.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Li, X., Li, L. & Yan, J. Nat. Commun. 6, 6648 (2015): https://doi.org/10.1038/ncomms7648

Luo, C. et al. Nat. Commun. 10, 786 (2019): https://doi.org/10.1038/s41467-019-08786-x

Zhang, W. et al. Plant J. 105, 197–208 (2021): https://doi.org/10.1111/tpj.15051

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Table 1.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Tariq, A., Jia, X. et al. Plant sperm cell sequencing for genome phasing and determination of meiotic crossover points. Nat Protoc 20, 690–708 (2025). https://doi.org/10.1038/s41596-024-01063-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-024-01063-2

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics