Table 5 Nomenclature used in FHNFM.
From: Innovative thermal management in the presence of ferromagnetic hybrid nanoparticles
\(\alpha\) | Thermal relaxation parameter |
---|---|
\(\phi _1,\;\phi _2\) | Nanoparticles concentration |
\(\theta\) | Dimensionless fluid temperature |
\(C_f\) | Skin friction coefficient |
\(\mu\) | Dynamic viscosity |
\(\nu\) | Kinematic viscosity |
\(K_1\) | Pyromagnetic coefficient |
\(\rho _f\) | Density of fluid |
\(\rho C_p\) | Heat capacity |
\(\eta\), Â \(\xi\) | Similarity transformation |
\(\lambda\) | Viscous dissipation parameter |
f (Subscript) | Base fluid |
hnf (Subscript) | Hybrid nanofluid |
\(\text {Re}_x\) | Local Reynolds number |
M | Magnetic parameter |
\(\text {Nu}_x\) | Loacal Nusselt number |
k | Thermal conductivity |
Pr | Prandtl number |
\(\rho _1\), Â \(\rho _2\) | Density of nanoparticles |
T | Temperature of hybrid nanofluid |
u | Fluid velocity in x-direction |
\(\beta\) | Ferrohydrodynamic interaction parameter |
v | Fluid velocity in y-direction |
\(U_w\) | Velocity of the stretching sheet |
x, y | Cartesian coordinates |
\(\delta _1\) | Magnetic potential |
\(\xi _1\) | Dipole moment per unit length |
H | Intensity magnetic field |
\(T_w\) | Wall temperature |
\(\epsilon\) | Curie temperature |