Table 1 Comparison with existing methods using ADNI database for AD vs CN classification.
Reference | Subjects | Methods | Accuracy (%) | Sensitivity | Specificity |
---|---|---|---|---|---|
Gonuguntla et al.35 | 65AD + 65CN | ROIs | 85.3 | – | – |
Kang et al.36 | 187AD + 229CN | DCGAN | 84.23 | – | – |
Vgg16 | 83.57 | – | – | ||
ResNet50 | 74.7 | – | – | ||
Kushol et al.37 | 159AD + 229CN | Transformer | 88.2 | 95.6% | 77.4% |
Cai et al.38 | 49AD + 43CN | Graph Transformer | 85.9 | 79.8% | 92.8% |
Qiu et al.23 | 188AD + 229CN | FCN | 83.4 | 76.7% | 88.9% |
Shahamat et al.39 | 70AD + 70CN | 3D CNN | 85 | – | – |
Shojaei et al.40 | 74AD + 71CN | 3D CNN | 87 | – | – |
Tinauer et al.41 | 128AD + 290CN | 3D CNN | 86.19 | 79.73% | 92.66% |
Proposed method | 188AD + 229CN | 3D CNN | 90.91 | 80.95% | 100% |