Table 1 Descriptions of the 26 benchmark functions.

From: Cooperative metaheuristic algorithm for global optimization and engineering problems inspired by heterosis theory

Function name

s/n

Formula

Range

Category

\(f_{min}^*\)

Sphere

F1

\(f_1(x) = \sum _{i=1}^{\text {dim}} x_i^2\)

\([-100, 100]\)

Unimodal

0

Schwefel 2.22

F2

\(f_2(x) = \sum _{i=1}^{\text {dim}} |x_i| + \prod _{i=1}^{\text {dim}} |x_i|\)

\([-10, 10]\)

Unimodal

0

Schwefel 1.2

F3

\(f_3(x) = \sum _{i=1}^{\text {dim}} \left( \sum _{j=1}^i x_j \right) ^2\)

\([-100, 100]\)

Unimodal

0

Schwefel 2.21

F4

\(f_4(x) = \max _i \{|x_i|\}, 1 \le i \le \text {dim}\)

\([-100, 100]\)

Unimodal

0

Step

F5

\(f_5(x) = \sum _{i=1}^{\text {dim}} \left( x_i + 0.5 \right) ^2\)

\([-100, 100]\)

Unimodal

0

Quartic

F6

\(f_6(x) = \sum _{i=1}^{\text {dim}} ix_i^4 + \text {rand}\)

\([-1.28, 1.28]\)

Unimodal

0

Exponential

F7

\(f_7(x) = \sum _{i=1}^{\text {dim}} (e^{x_i} - x_i)\)

\([-10, 10]\)

Unimodal

0

Sum power

F8

\(f_8(x) = \sum _{i=1}^{\text {dim}} x_i^2\)

\([-1, 1]\)

Unimodal

0

Sum square

F9

\(f_9(x) = \sum _{i=1}^{\text {dim}} ix_i^2\)

\([-10, 10]\)

Unimodal

0

Rosenbrock

F10

\(f_{10}(x) = \sum _{i=1}^{\text {dim}-1} ( 100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2\)

   
  

\(- x_i^2)^2 + (x_i - 1)^2 )\)

\([-5, 10]\)

Unimodal

0

Zakharov

F11

\(f_{11}(x) = \sum _{i=1}^{\text {dim}} x_i^2 + \left( \sum _{i=1}^{\text {dim}} 0.5ix_i \right) ^2\)

   
  

\(+ \left( \sum _{i=1}^{\text {dim}} 0.5ix_i \right) ^4\)

\([-5, 10]\)

Unimodal

0

Trid

F12

\(f_{12}(x) = \sum _{i=1}^{\text {dim}} (x_i - 1)^2 - \sum _{i=2}^{\text {dim}} x_i x_{i-1}\)

\([-5, 10]\)

Unimodal

0

Elliptic

F13

\(f_{13}(x) = \sum _{i=1}^{\text {dim}} (10^6)^{i/(\text {dim}-1)} x_i^2\)

\([-100, 100]\)

Unimodal

0

Cigar

F14

\(f_{14}(x) = x_1^2 + 10^6 \sum _{i=2}^{\text {dim}} x_i^2\)

\([-100, 100]\)

Unimodal

0

Rastrigin

F15

\(f_{15}(x) = \sum _{i=1}^{\text {dim}} \left( x_i^2 - 10 \cos (2\pi x_i) + 10 \right)\)

\([-5.12, 5.12]\)

Unimodal

0

NCRastrigin

F16

\(f_{16}(x) = \sum _{i=1}^{\text {dim}} \left( x_i^2 - 10 \cos (2\pi x_i) + 10 \right) , y_i = {\left\{ \begin{array}{ll} x_i, & \text {if } x_i \le 0.5 \\ x_i - 1, & \text {otherwise} \end{array}\right. }\)

\([-5.12, 5.12]\)

Multimodal

0

Ackley

F17

\(f_{17}(x) = 20e^{-0.2 \sqrt{\frac{1}{\text {dim}} \sum _{i=1}^{\text {dim}} x_i^2}} + e^{-1} \sum _{i=1}^{\text {dim}} \cos (2\pi x_i)\)

   
  

\(+ 20 + e\)

\([-50, 50]\)

Multimodal

0

Griewank

F18

\(f_{18}(x) = 1 + \frac{1}{4000} \sum _{i=1}^{\text {dim}} x_i^2 - \prod _{i=1}^{\text {dim}} \cos \left( \frac{x_i}{\sqrt{i}} \right)\)

\([-600, 600]\)

Multimodal

0

Alpine

F19

\(f_{19}(x) = \sum _{i=1}^{\text {dim}} |x_i \sin (x_i) + 0.1x_i|\)

\([-10, 10]\)

Multimodal

0

Penalized 1

F20

\(f_{20}(x) = \frac{\pi }{\text {dim}} \left\{ 10 \sin ^2(\pi y_1) + \sum _{i=1}^{\text {dim}-1} (y_i-1)^2 [1+10 \sin ^2(\pi y_{i+1})] \right.\)

   
  

\(\left. + (y_{\text {dim}}-1)^2 \right\} + \sum _{i=1}^{\text {dim}} u(x_i, 10, 100, 4),\)

   
  

\(y_i = 1 + \frac{x_i+1}{4}, u(x_i,a,k,m) = {\left\{ \begin{array}{ll} k(x_i - a)^m, & x_i > a \\ 0, & -a \le x_i \le a \\ k(-x_i - a)^m, & x_i < -a \end{array}\right. }\)

\([-100, 100]\)

Multimodal

0

Penalized 2

F21

\(f_{21}(x) = 0.1 \left\{ \sin ^2(3\pi x_1) + \sum _{i=1}^{\text {dim}-1} (x_i-1)^2 [1+\sin ^2(3\pi x_{i+1})] \right.\)

   
  

\(\left. + (x_{\text {dim}}-1)^2 [1+\sin ^2(2\pi x_{\text {dim}})] \right\} + \sum _{i=1}^{\text {dim}} u(x_i, 5, 100, 4)\)

\([-100, 100]\)

Multimodal

0

Schwefel

F22

\(f_{22}(x) = \sum _{i=1}^{\text {dim}} x_i \sin (\sqrt{|x_i|})\)

\([-100, 100]\)

Multimodal

0

Lévy

F23

\(f_{23}(x) = \sin ^2(3\pi x_1) + \sum _{i=1}^{\text {dim}} (x_i - 1)^2 [1 + \sin ^2(3\pi x_{i+1})]\)

   
  

\(+ (x_{\text {dim}} - 1)^2 [1 + \sin ^2(2\pi x_{\text {dim}})]\)

\([-10, 10]\)

Multimodal

0

Weierstrass

F24

\(f_{24}(x) = \sum _{i=1}^{\text {dim}} \left( \sum _{k=0}^{k_{\max }} a^k \cos (2\pi b^k (x_i+0.5)) \right)\)

   
  

\(- \text {dim} \left( \sum _{k=0}^{k_{\max }} a^k \cos (\pi b^k) \right) , a = 0.5, b = 3, k_{\max } = 20\)

\([-1, 1]\)

Multimodal

0

Solomon

F25

\(f_{25}(x) = 1 - \cos \left( 2\pi \sqrt{\sum _{i=1}^{\text {dim}} x_i^2} \right) + 0.1 \sqrt{\sum _{i=1}^{\text {dim}} x_i^2}\)

\([-100, 100]\)

Multimodal

0

Bohachevsky

F26

\(f_{26}(x) = \sum _{i=1}^{\text {dim}} \left( x_i^2 + 2x_i^2 - 0.3\cos (3\pi x_i) \right)\)

\([-10, 10]\)

Multimodal

0