Table 8 Comparison of medical image segmentation baseline models on LiTS dataset.
From: Edge-guided multi-scale adaptive feature fusion network for liver tumor segmentation
Network | Dice | VOE | RVD |
---|---|---|---|
UNet6 | 0.6352 | 0.4643 | − 0.1903 |
Att-UNet37 | 0.6474 | 0.4494 | − 0.0329 |
TransUNet38 | 0.6710 | 0.4267 | − 0.1232 |
TransNetR39 | 0.6123 | 0.4891 | − 0.3343 |
PVTformer12 | 0.6957 | 0.4164 | − 0.2326 |
UNeXt40 | 0.6554 | 0.4430 | − 0.1625 |
Brau_Net +  + 41 | 0.6986 | 0.3957 | − 0.1324 |
Swin Transformer42 | 0.7060 | 0.3967 | − 0.1296 |
MAEG-Net(ours) | 0.7184 | 0.3864 | − 0.1238 |