Table 10 Comparison of results for different classifiers in miRNA-disease prediction.

From: Predicting noncoding RNA and disease associations using multigraph contrastive learning

 

Accuracy

Precision

Recall

F1-score

AUC

DT

0.8625

0.8397

0.8962

0.8670

0.9364

LR

0.8225

0.8190

0.8282

0.8235

0.9151

MLP

0.8675

0.8502

0.8929

0.8708

0.9440

SVM

0.8633

0.8573

0.8720

0.8645

0.9399

Adaboost

0.8594

0.8468

0.8777

0.8620

0.9399

XGboost

0.8858

0.8655

0.9137

0.8889

0.9542