Table 10 Comparison of results for different classifiers in miRNA-disease prediction.
From: Predicting noncoding RNA and disease associations using multigraph contrastive learning
 | Accuracy | Precision | Recall | F1-score | AUC |
---|---|---|---|---|---|
DT | 0.8625 | 0.8397 | 0.8962 | 0.8670 | 0.9364 |
LR | 0.8225 | 0.8190 | 0.8282 | 0.8235 | 0.9151 |
MLP | 0.8675 | 0.8502 | 0.8929 | 0.8708 | 0.9440 |
SVM | 0.8633 | 0.8573 | 0.8720 | 0.8645 | 0.9399 |
Adaboost | 0.8594 | 0.8468 | 0.8777 | 0.8620 | 0.9399 |
XGboost | 0.8858 | 0.8655 | 0.9137 | 0.8889 | 0.9542 |