Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sustainable lithium extraction and magnesium hydroxide co-production from salt-lake brines

Abstract

In recent years, the demand for lithium (Li) has been on the rise as Li-ion batteries are playing an increasingly important role in powering the global transition to a low-carbon society. In contrast to the predominant production of lithium from hard rock, lithium extraction from brine sources has proven more economical and sustainable. However, substantial challenges remain, including the low efficiency of the extraction process, especially for brines of high salinity, complex composition and poor selectivity against magnesium, the major competing species. Here we show a loose nanofiltration process involving ethylenediaminetetraacetic acid (EDTA) for direct and efficient Li+ extraction as well as effective Mg2+ utilization from salt-lake brines. Taking advantage of selective binding between EDTA4− and Mg2+, our process achieves ultrahigh Mg2+ rejection of 99.85%, ultrafast Li+ flux of ~4.34 mol m−2 h−1 and unprecedented Li+/Mg2+ separation factor (~679) under industrial conditions (127.06 g l−1). More importantly, the Li+ recovery rate reaches 89.90% through a two-stage filtration process, while Mg2+ waste is converted to nanostructured Mg(OH)2 and 98.87% of EDTA4− can be regenerated. Our scalable process minimizes environmental impact while maximizing resource utilization, thereby catalysing the shift toward a more sustainable future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of different lithium extraction processes: evaporation-precipitation vs EALNF.
Fig. 2: Selective binding and filtration of binary-cation brine.
Fig. 3: Filtration of salt-lake brines.
Fig. 4: Comprehensive brine resource utilization and techno-economic analysis.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are provided as Source Data and in the Supplementary Information.

References

  1. Chen, X. et al. Spatially separated crystallization for selective lithium extraction from saline water. Nat. Water 1, 808–817 (2023).

    Google Scholar 

  2. The Growing Role of Minerals and Metals for a Low Carbon Future (World Bank Group, 2017).

  3. Haddad, A. Z. et al. How to make lithium extraction cleaner, faster and cheaper in six steps. Nature 616, 245–248 (2023).

    CAS  Google Scholar 

  4. Ding, T. et al. Lithium extraction from salt lakes with different hydrochemical types in the Tibet Plateau. Geosci. Front. 14, 101485 (2023).

    CAS  Google Scholar 

  5. Xu, S. et al. Extraction of lithium from Chinese salt-lake brines by membranes: design and practice. J. Memb. Sci. 635, 119441 (2021).

    CAS  Google Scholar 

  6. Zhang, Y., Hu, Y., Wang, L. & Sun, W. Systematic review of lithium extraction from salt-lake brines via precipitation approaches. Miner. Eng. 139, 105868 (2019).

    CAS  Google Scholar 

  7. Tabelin, C. B. et al. Towards a low-carbon society: a review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives. Miner. Eng. 163, 106743 (2021).

    CAS  Google Scholar 

  8. Vera, M. L., Torres, W. R., Galli, C. I., Chagnes, A. & Flexer, V. Environmental impact of direct lithium extraction from brines. Nat. Rev. Earth Environ. 4, 149–165 (2023).

    CAS  Google Scholar 

  9. Zeng, Y. et al. Electrochemically mediated lithium extraction for energy and environmental sustainability. Adv. Funct. Mater. 34, 2400416 (2024).

    CAS  Google Scholar 

  10. DuChanois, R. M. et al. Prospects of metal recovery from wastewater and brine. Nat. Water 1, 37–46 (2023).

    Google Scholar 

  11. Yang, S., Zhang, F., Ding, H., He, P. & Zhou, H. Lithium metal extraction from seawater. Joule 2, 1648–1651 (2018).

    Google Scholar 

  12. Peng, H. & Zhao, Q. A nano-heterogeneous membrane for efficient separation of lithium from high magnesium/lithium ratio brine. Adv. Funct. Mater. 31, 2009430 (2021).

    CAS  Google Scholar 

  13. Lu, J. et al. Efficient metal ion sieving in rectifying subnanochannels enabled by metal–organic frameworks. Nat. Mater. 19, 767–774 (2020).

    CAS  Google Scholar 

  14. Hafer, E. et al. Qualitative and quantitative 1H-NMR spectroscopy for determination of divalent metal cation concentration in model salt solutions, food supplements, and pharmaceutical products by using EDTA as chelating agent. Magn. Reson. Chem. 58, 653–665 (2020).

    CAS  Google Scholar 

  15. Wang, R., Alghanayem, R. & Lin, S. Multipass nanofiltration for lithium separation with high selectivity and recovery. Environ. Sci. Technol. 57, 14464–14471 (2023).

    CAS  Google Scholar 

  16. Guo, B.-B. et al. Double charge flips of polyamide membrane by ionic liquid-decoupled bulk and interfacial diffusion for on-demand nanofiltration. Nat. Commun. 15, 2282 (2024).

    CAS  Google Scholar 

  17. Peng, H., Su, Y., Liu, X., Li, J. & Zhao, Q. Designing Gemini-electrolytes for scalable Mg2+/Li+ separation membranes and modules. Adv. Funct. Mater. 33, 2305815 (2023).

    CAS  Google Scholar 

  18. Peng, H. et al. Quaternization-spiro design of chlorine-resistant and high-permeance lithium separation membranes. Nat. Commun. 14, 5483 (2023).

    CAS  Google Scholar 

  19. Zhao, G., Gao, H., Qu, Z., Fan, H. & Meng, H. Anhydrous interfacial polymerization of sub-1 Å sieving polyamide membrane. Nat. Commun. 14, 7624 (2023).

    CAS  Google Scholar 

  20. Wang, R., He, R., He, T., Elimelech, M. & Lin, S. Performance metrics for nanofiltration-based selective separation for resource extraction and recovery. Nat. Water 1, 291–300 (2023).

    Google Scholar 

  21. Wang, L. et al. Novel positively charged metal-coordinated nanofiltration membrane for lithium recovery. ACS Appl. Mater. Interfaces 13, 16906–16915 (2021).

    CAS  Google Scholar 

  22. Yuan, B. et al. Self-assembled dendrimer polyamide nanofilms with enhanced effective pore area for ion separation. Nat. Commun. 15, 471 (2024).

    CAS  Google Scholar 

  23. Hamzaoui, A. H., M’nif, A., Hammi, H. & Rokbani, R. Contribution to the lithium recovery from brine. Desalination 158, 221–224 (2003).

    CAS  Google Scholar 

  24. Swain, B. Recovery and recycling of lithium: a review. Sep. Purif. Technol. 172, 388–403 (2017).

    CAS  Google Scholar 

  25. Flexer, V., Baspineiro, C. F. & Galli, C. I. Lithium recovery from brines: a vital raw material for green energies with a potential environmental impact in its mining and processing. Sci. Total Environ. 639, 1188–1204 (2018).

    CAS  Google Scholar 

  26. Soyekwo, F., Wen, H., Liao, D. & Liu, C. Fouling-resistant ionic graft-polyamide nanofiltration membrane with improved permeance for lithium separation from MgCl2/LiCl mixtures. J. Memb. Sci. 659, 120773 (2022).

    CAS  Google Scholar 

  27. Lejars, M., Margaillan, A. & Bressy, C. Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem. Rev. 112, 4347–4390 (2012).

    CAS  Google Scholar 

  28. Li, Q. & Elimelech, M. Organic fouling and chemical cleaning of nanofiltration membranes: measurements and mechanisms. Environ. Sci. Technol. 38, 4683–4693 (2004).

    CAS  Google Scholar 

  29. Yang, X. et al. Chelation-directed interface engineering of in-place self-cleaning membranes. Proc. Natl Acad. Sci. USA 121, e2319390121 (2024).

    CAS  Google Scholar 

  30. Zhang, X. et al. Effect of chemical cleaning on nanofiltration process in treating surface water. J. Water Process Eng. 50, 103271 (2022).

    Google Scholar 

  31. Foo, Z. H., Rehman, D., Bouma, A. T., Monsalvo, S. & Lienhard, J. H. Lithium concentration from salt-lake brine by Donnan-enhanced nanofiltration. Environ. Sci. Technol. 57, 6320–6330 (2023).

    CAS  Google Scholar 

  32. Cui, R. Solubility measurement and prediction of phase equilibria in the quaternary system LiCl+NaCl+KCl+H2O and ternary subsystem LiCl+NaCl+H2O at 288.15 K. Chin. J. Chem. Eng. 28, 2137–2141 (2020).

    CAS  Google Scholar 

  33. Lian, L., Song, X., Chen, H. & Yu, J. Phase equilibrium and evaporation process simulation for the lithium recovery from NaCl-LiCl-H2O system with high presence of organic NMP. Desalination 562, 116703 (2023).

    CAS  Google Scholar 

  34. Zhong, C.-Y., Lv, Y.-P., Wen, W.-F., Chen, Q. & Zhang, W.-M. Sustainable production of lithium acetate by bipolar membrane electrodialysis metathesis. ACS Sustain. Chem. Eng. 10, 6045–6056 (2022).

    CAS  Google Scholar 

  35. Xu, R., Kang, Y., Zhang, W., Zhang, X. & Pan, B. Oriented UiO-67 metal–organic framework membrane with fast and selective lithium-ion transport. Angew. Chem. Int. Ed. 61, e202115443 (2022).

    CAS  Google Scholar 

  36. Battaglia, G. et al. Recovery of lithium carbonate from dilute Li-rich brine via homogenous and heterogeneous precipitation. Ind. Eng. Chem. Res. 61, 13589–13602 (2022).

    CAS  Google Scholar 

  37. Huang, Y. & Feng, X. Polymer-enhanced ultrafiltration: fundamentals, applications and recent developments. J. Memb. Sci. 586, 53–83 (2019).

    CAS  Google Scholar 

  38. Rivas, B. Water-soluble polymer–metal ion interactions. Prog. Polym. Sci. 28, 173–208 (2003).

    CAS  Google Scholar 

  39. Qiu, L., Xie, R., Ding, P. & Qu, B. Preparation and characterization of Mg(OH)2 nanoparticles and flame-retardant property of its nanocomposites with EVA. Compos. Struct. 62, 391–395 (2003).

    Google Scholar 

  40. Battistel, A., Palagonia, M. S., Brogioli, D., La Mantia, F. & Trócoli, R. Electrochemical methods for lithium recovery: a comprehensive and critical review. Adv. Mater. 32, 1905440 (2020).

    CAS  Google Scholar 

  41. He, L. et al. New insights into the application of lithium-ion battery materials: selective extraction of lithium from brines via a rocking-chair lithium-ion battery system. Glob. Chall. 2, 1700079 (2018).

    Google Scholar 

  42. Ma, H. et al. Dual-channel-ion conductor membrane for low-energy lithium extraction. Environ. Sci. Technol. 57, 17246–17255 (2023).

    CAS  Google Scholar 

Download references

Acknowledgements

Z.L. acknowledges support from the Monash University Start-up Fund (Project No. MSRI8001003).

Author information

Authors and Affiliations

Authors

Contributions

M.Y. and M.T. designed the experiment. M.Y. conducted the experiment and analysed the results. Z.L. and X.Z. proposed and supervised the project. L.S. contributed to data analysis. E.L. and F.X. contributed to the technical and economic analysis. G.Z. and L.X. contributed to conducting SEM, 1H-NMR characterization, AFM force measurement and project discussion. X.R., K.W. and Y.C. carried out the DFT calculation. M.Y. wrote and revised the paper. Z.L., E.L. and X.Z. discussed the results, commented on and revised the paper. H.W. provided constructive suggestions for the project.

Corresponding authors

Correspondence to Zhikao Li, Enchao Li or Xiwang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Jian Jin, Qiaoying Wang, Walter Torres and Amir Razmjou for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs. 1–52, Note 1 and Tables 1–9.

Reporting Summary

Source data

Source Data Fig. 2

Processed NMR patterns and statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Processed XRD pattern and statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yong, M., Tang, M., Sun, L. et al. Sustainable lithium extraction and magnesium hydroxide co-production from salt-lake brines. Nat Sustain 7, 1662–1671 (2024). https://doi.org/10.1038/s41893-024-01435-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-024-01435-2

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene