Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Room-temperature co-upcycling of polyvinyl chloride and polypropylene

Abstract

Co-upcycling of mixed plastics offers a viable approach to reusing carbon resources in plastic wastes and realizing circular economy. However, the presence of polyvinyl chloride (PVC) often complicates the co-upcycling processes, because chlorine (Cl) released from PVC can deactivate catalysts and enter final products. Moreover, existing plastic upcycling processes usually require harsh reaction conditions. Here we present a strategy enabling efficient co-upcycling of PVC and polypropylene (PP) at mild conditions. We use chlorine-resistant ionic liquids butylpyridinium chloride-aluminium chloride to dechlorinate PVC and simultaneously depolymerize the PP–PVC mixture into Cl-free liquid hydrocarbons, with the co-production of hydrogen chloride (HCl) as byproduct. This conversion approach operates at room temperature without the use of external hydrogen or noble metal catalysts. The Cl-free liquid hydrocarbon yield is up to 97.4 wt% of C and H in the feed PP–PVC mixture. This work can incentivize further technical development in plastic upcycling and improve the sustainability of plastic waste management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conversion of PP, PVC and their mixture in [C4Py]Cl-AlCl3.
Fig. 2: The impact of the PP/PVC mixture mass ratio on their co-conversion.
Fig. 3: Time-resolved PP–PVC co-conversion.
Fig. 4: Proposed reaction mechanism.
Fig. 5: Conversion of post-consumer plastic waste mixture.
Fig. 6: Recycling tests of [C4Py]Cl-AlCl3 catalysts.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request. Source data are provided with this paper.

References

  1. Xu, Z. et al. Cascade degradation and upcycling of polystyrene waste to high-value chemicals. Proc. Natl Acad. Sci. USA 119, e2203346119 (2022).

    Article  CAS  Google Scholar 

  2. Lebreton, L. & Andrady, A. Future scenarios of global plastic waste generation and disposal. Palgrave Commun. 5, 6 (2019).

    Article  Google Scholar 

  3. Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E. & Purnell, P. An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 344, 179–199 (2018).

    Article  CAS  Google Scholar 

  4. Tournier, V. et al. Enzymes’ power for plastics degradation. Chem. Rev. 123, 5612–5701 (2023).

    Article  CAS  Google Scholar 

  5. The New Plastics Economy: Catalysing Action (Ellen MacArthur Foundation, 2017); https://ellenmacarthurfoundation.org/the-new-plastics-economy-catalysing-action

  6. Sardon, H. & Dove, A. P. Plastics recycling with a difference. Science 360, 380–381 (2018).

    Article  CAS  Google Scholar 

  7. Xu, Z. et al. Chemical upcycling of polyethylene, polypropylene, and mixtures to high-value surfactants. Science 381, 666–671 (2023).

    Article  CAS  Google Scholar 

  8. Sun, J. et al. Bifunctional tandem catalytic upcycling of polyethylene to surfactant-range alkylaromatics. Chem 9, 2318–2336 (2023).

    Article  CAS  Google Scholar 

  9. Zhang, F. et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 370, 437–441 (2020).

    Article  CAS  Google Scholar 

  10. Kots, P. A. et al. Polypropylene plastic waste conversion to lubricants over Ru/TiO2 catalysts. ACS Catal. 11, 8104–8115 (2021).

    Article  CAS  Google Scholar 

  11. Gao, Z., Ma, B., Chen, S., Tian, J. & Zhao, C. Converting waste PET plastics into automobile fuels and antifreeze components. Nat. Commun. 13, 3343 (2022).

    Article  CAS  Google Scholar 

  12. Jia, X., Qin, C., Friedberger, T., Guan, Z. & Huang, Z. Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions. Sci. Adv. 2, e1501591 (2016).

    Article  Google Scholar 

  13. Li, Y. et al. Catalytic transformation of PET and CO2 into high-value chemicals. Angew. Chem. Int. Ed. 61, e202117205 (2022).

    Article  CAS  Google Scholar 

  14. Mi, R. et al. Solvent-free heterogeneous catalytic hydrogenation of polyesters to diols. Angew. Chem. Int. Ed. 62, e202304219 (2023).

    Article  CAS  Google Scholar 

  15. Sun, B. et al. Valorization of waste biodegradable polyester for methyl methacrylate production. Nat. Sustain. 6, 712–719 (2023).

    Article  Google Scholar 

  16. Jiao, Y., Wang, M. & Ma, D. Catalytic cracking of polylactic acid to acrylic acid. Chin. J. Chem. 41, 2071–2076 (2023).

    Article  CAS  Google Scholar 

  17. Cao, R. et al. Catalytic oxidation of polystyrene to aromatic oxygenates over a graphitic carbon nitride catalyst. Nat. Commun. 13, 4809 (2022).

    Article  CAS  Google Scholar 

  18. Tian, S. et al. Catalytic amination of polylactic acid to alanine. J. Am. Chem. Soc. 143, 16358–16363 (2021).

    Article  CAS  Google Scholar 

  19. Jaydev, S. D., Martín, A. J. & Pérez-Ramírez, J. Direct conversion of polypropylene into liquid hydrocarbons on carbon-supported platinum catalysts. ChemSusChem 14, 5179–5185 (2021).

    Article  CAS  Google Scholar 

  20. Arroyave, A. et al. Catalytic chemical recycling of post-consumer polyethylene. J. Am. Chem. Soc. 144, 23280–23285 (2022).

    Article  CAS  Google Scholar 

  21. Conk, R. J. et al. Catalytic deconstruction of waste polyethylene with ethylene to form propylene. Science 377, 1561–1566 (2022).

    Article  CAS  Google Scholar 

  22. Zhao, D., Wang, X., Miller, J. B. & Huber, G. W. The chemistry and kinetics of polyethylene pyrolysis: a process to produce fuels and chemicals. ChemSusChem 13, 1764–1774 (2020).

    Article  CAS  Google Scholar 

  23. Li, H. et al. Aliphatic amines from waste polyolefins by tandem pyrolysis, hydroformylation, and reductive amination. Green Chem. 26, 8718–8727 (2024).

    Article  CAS  Google Scholar 

  24. Li, H. et al. Hydroformylation of pyrolysis oils to aldehydes and alcohols from polyolefin waste. Science 381, 660–666 (2023).

    Article  CAS  Google Scholar 

  25. Demarteau, J. et al. Circularity in mixed-plastic chemical recycling enabled by variable rates of polydiketoenamine hydrolysis. Sci. Adv. 8, eabp8823 (2022).

    Article  CAS  Google Scholar 

  26. Yadav, G. et al. Techno-economic analysis and life cycle assessment for catalytic fast pyrolysis of mixed plastic waste. Energy Environ. Sci. 16, 3638–3653 (2023).

    Article  CAS  Google Scholar 

  27. Zou, L. et al. Chemical recycling of polyolefins: a closed-loop cycle of waste to olefins. Natl Sci. Rev. 10, nwad207 (2023).

    Article  CAS  Google Scholar 

  28. Ragaert, K. et al. Design from recycling: a complex mixed plastic waste case study. Resour. Conserv. Recycl. 155, 104646 (2020).

    Article  Google Scholar 

  29. Matjašič, T. et al. Critical evaluation of biodegradation studies on synthetic plastics through a systematic literature review. Sci. Total Environ. 752, 141959 (2021).

    Article  Google Scholar 

  30. Sullivan, K. P. et al. Mixed plastics waste valorization through tandem chemical oxidation and biological funneling. Science 378, 207–211 (2022).

    Article  CAS  Google Scholar 

  31. Albertsson, A.-C. & Hakkarainen, M. Designed to degrade. Science 358, 872–873 (2017).

    Article  CAS  Google Scholar 

  32. The Facts 2021: An Analysis of European Plastics Production, Demand and Waste Data (Plastics Europe, 2021).

  33. Feng, B., Jing, Y., Liu, X., Guo, Y. & Wang, Y. Waste PVC upcycling: transferring unmanageable Cl species into value-added Cl-containing chemicals. Appl. Catal. B 331, 122671 (2023).

    Article  CAS  Google Scholar 

  34. Svadlenak, S. et al. Upcycling of polyvinyl chloride to hydrocarbon waxes via dechlorination and catalytic hydrogenation. Appl. Catal., B 338, 123065 (2023).

    Article  CAS  Google Scholar 

  35. Fagnani, D. E., Kim, D., Camarero, S. I., Alfaro, J. F. & McNeil, A. J. Using waste poly(vinyl chloride) to synthesize chloroarenes by plasticizer-mediated electro(de)chlorination. Nat. Chem. 15, 222–229 (2023).

    Article  CAS  Google Scholar 

  36. Kots, P. A., Vance, B. C., Quinn, C. M., Wang, C. & Vlachos, D. G. A two-stage strategy for upcycling chlorine-contaminated plastic waste. Nat. Sustain. 6, 1258–1267 (2023).

    Article  Google Scholar 

  37. Oster, K. et al. Dehydrochlorination of PVC in multi-layered blisterpacks using ionic liquids. Green Chem. 22, 5132–5142 (2020).

    Article  CAS  Google Scholar 

  38. Zhao, T. et al. A highly efficient approach for dehydrochlorinating polyvinyl chloride: catalysis by 1-butyl-3-methylimidazolium chloride. Green Chem. 12, 1062–1065 (2010).

    Article  CAS  Google Scholar 

  39. Cao, R. et al. Co-upcycling of polyvinyl chloride and polyesters. Nat. Sustain. 6, 1685–1692 (2023).

    Article  Google Scholar 

  40. Zhang, W. et al. Low-temperature upcycling of polyolefins into liquid alkanes via tandem cracking-alkylation. Science 379, 807–811 (2023).

    Article  CAS  Google Scholar 

  41. Zhang, W. et al. Chloride and hydride transfer as keys to catalytic upcycling of polyethylene into liquid alkanes. Angew. Chem. Int. Ed. 63, e202319580 (2024).

    Article  CAS  Google Scholar 

  42. Vollmer, I. et al. Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem. Int. Ed. 59, 15402–15423 (2020).

    Article  CAS  Google Scholar 

  43. Zhou, J. et al. Understanding the pyrolysis mechanism of polyvinylchloride (PVC) by characterizing the chars produced in a wire-mesh reactor. Fuel 166, 526–532 (2016).

    Article  CAS  Google Scholar 

  44. Li, D. et al. Study on the pyrolysis behaviors of mixed waste plastics. Renewable Energy 173, 662–674 (2021).

    Article  CAS  Google Scholar 

  45. Wu, J. et al. Kinetic study of polyvinyl chloride pyrolysis with characterization of dehydrochlorinated PVC. ACS Sustain. Chem. Eng. 12, 7402–7413 (2024).

    Article  CAS  Google Scholar 

  46. O’Rourke, G. et al. Catalytic tandem dehydrochlorination–hydrogenation of PVC towards valorisation of chlorinated plastic waste. Chem. Sci. 14, 4401–4412 (2023).

    Article  Google Scholar 

  47. Zhang, Y. et al. Promotion of protolytic pentane conversion on H-MFI zeolite by proximity of extra-framework aluminum oxide and Brønsted acid sites. J. Catal. 370, 424–433 (2019).

    Article  CAS  Google Scholar 

  48. Brouwer, D. M. & Hogeveen, H. in Progress in Physical Organic Chemistry Vol. 9 (ed. Taft, R. W.) 179–240 (John Wiley & Sons, Inc., Publishing, 1972).

  49. Rey, J., Raybaud, P., Chizallet, C. & Bučko, T. Competition of secondary versus tertiary carbenium routes for the type B isomerization of alkenes over acid zeolites quantified by ab initio molecular dynamics simulations. ACS Catal. 9, 9813–9828 (2019).

    Article  CAS  Google Scholar 

  50. Timken, H. K. et al. Commercial Applications of Ionic Liquids (ed. Shiflett, M. B.) Ch. 2 (Springer International Publishing, 2020).

Download references

Acknowledgements

This work is financially supported by the Natural Science Foundation of Shanghai (23ZR1418800) and National Natural Science Foundation of China (22302069, 22472059). Z.G. acknowledges the Fundamental Research Funds for the Central Universities (YBNL TS2023-07). We appreciate the help of East China Normal University Multifunctional Platform for Innovation for support of SEM characterizations (004).

Author information

Authors and Affiliations

Contributions

W.Z. and Y.L. conceived the research. Z.G., Y.W., L.Y., X.S., Y.S., M.Z. and S.F. performed most of the experiments. Z.G., Y.W., W.Z. and Y.L. analysed results. J.J. collected and analysed NMR spectra. The paper was written and revised by all the authors together.

Corresponding authors

Correspondence to Wei Zhang or Yue Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Jinwen Zhang, George Huber and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–24 and Tables. 1–3.

Reporting Summary

Source data

Source Data Figs. 1–6

Statistical source data of Figs. 1–6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Wang, Y., Yuan, L. et al. Room-temperature co-upcycling of polyvinyl chloride and polypropylene. Nat Sustain 7, 1691–1698 (2024). https://doi.org/10.1038/s41893-024-01468-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-024-01468-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing