Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Axial alignment of covalent organic framework membranes for giant osmotic energy harvesting

Abstract

The membrane-based osmotic power generation technology can both provide sustainable energy and address environmental pollution utilizing an eco-friendly energy conversion mechanism. Covalent organic framework (COF) membranes are an attractive option for this application due to their porosity, well-defined pores and tunable surface chemistry. However, precise engineering of the porous structure for rapid ion transport remains a challenge. Here we engineer the initially randomly oriented COF nanochannels into a highly axially aligned configuration, delivering a metal ion-coordinated COF framework, through interfacial polymerization followed by coordination to different ions, including Ca2+, Mg2+, Al3+, Fe3+, Zn2+, Co2+ and Cu2+. Notably, the representative Ca-COF demonstrates a superior cation selectivity of 0.93 and ionic conductivity of 0.06 S m−1. When applied to osmotic energy harvesting, the Ca-COF membranes deliver a record output power density of 320.8 W m−2 in the presence of a mixture of natural seawater and river water. By highlighting the importance of aligning metal ion-coordinated COF nanochannels in improving ion selectivity and permeability, our strategy suggests a pathway in unlocking the potential of osmotic energy harvesting technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis and characterization of Ca-COF membranes.
Fig. 2: The ion permeability/selectivity and osmotic energy conversion of the membranes.
Fig. 3: Numerical simulations.
Fig. 4: Wider applicability of axially aligned M-COF membranes.

Similar content being viewed by others

Data availability

All data supporting the findings in this study are available within the article and its Supplementary Information. Source data are provided with this paper.

References

  1. Wang, M. et al. Ultrafast seawater desalination with covalent organic framework membranes. Nat. Sustain. 5, 518–526 (2022).

    Article  Google Scholar 

  2. Ying, Y. et al. Ultrathin covalent organic framework membranes via a multi-interfacial engineering strategy for gas separation. Adv. Mater. 34, 2104946 (2022).

    Article  CAS  Google Scholar 

  3. Wang, M. et al. Electrochemical interfacial polymerization toward ultrathin COF membranes for brine desalination. Angew. Chem. Int. Ed. 62, e202219084 (2023).

    Article  CAS  Google Scholar 

  4. Knebel, A. & Caro, J. Metal–organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation. Nat. Nanotechnol. 17, 911–923 (2022).

    Article  CAS  Google Scholar 

  5. Kong, Y. et al. Manipulation of cationic group density in covalent organic framework membranes for efficient anion transport. J. Am. Chem. Soc. 145, 27984–27992 (2023).

    Article  CAS  Google Scholar 

  6. Cao, L. et al. Giant osmotic energy conversion through vertical-aligned ion-permselective nanochannels in covalent organic framework membranes. J. Am. Chem. Soc. 144, 12400–12409 (2022).

    Article  CAS  Google Scholar 

  7. Fan, H. et al. High-flux vertically aligned 2D covalent organic framework membrane with enhanced hydrogen separation. J. Am. Chem. Soc. 142, 6872–6877 (2020).

    Article  CAS  Google Scholar 

  8. Cao, L. et al. Oriented two-dimensional covalent organic framework membranes with high ion flux and smart gating nanofluidic transport. Angew. Chem. Int. Ed. 61, e202113141 (2022).

    Article  CAS  Google Scholar 

  9. Jiang, C. et al. Constructing universal ionic sieves via alignment of two-dimensional covalent organic frameworks (COFs). Angew. Chem. Int. Ed. 57, 16072–16076 (2018).

    Article  CAS  Google Scholar 

  10. Guo, H., Jiang, J., Fang, C. & Zhu, L. Highly crystalline and robust covalent organic framework membranes for predictable solvent transport and molecular separation. J. Mater. Chem. A 11, 19374–19383 (2023).

    Article  CAS  Google Scholar 

  11. Jing, X. et al. Gradient channel segmentation in covalent organic framework membranes with highly oriented nanochannels. J. Am. Chem. Soc. 145, 21077–21085 (2023).

    Article  CAS  Google Scholar 

  12. Li, Y., Sui, J., Cui, L.-S. & Jiang, H.-L. Hydrogen bonding regulated flexibility and disorder in hydrazone-linked covalent organic frameworks. J. Am. Chem. Soc. 145, 1359–1366 (2023).

    Article  CAS  Google Scholar 

  13. Fan, C. et al. Scalable fabrication of crystalline COF membranes from amorphous polymeric membranes. Angew. Chem. Int. Ed. 60, 18051–18058 (2021).

    Article  CAS  Google Scholar 

  14. Yin, C. et al. Perpendicular alignment of covalent organic framework (COF) pore channels by solvent vapor annealing. J. Am. Chem. Soc. 145, 11431–11439 (2023).

    Article  CAS  Google Scholar 

  15. Liu, K. et al. On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nat. Chem. 11, 994–1000 (2019).

    Article  CAS  Google Scholar 

  16. Zhang, W. et al. Reconstructed covalent organic frameworks. Nature 604, 72–79 (2022).

    Article  CAS  Google Scholar 

  17. Yang, R. et al. Potential difference-modulated synthesis of self-standing covalent organic framework membranes at liquid/liquid interfaces. J. Am. Chem. Soc. 144, 11778–11787 (2022).

    Article  CAS  Google Scholar 

  18. Zhu, T. et al. 3D covalent organic framework membrane with fast and selective ion transport. Nat. Commun. 14, 5926 (2023).

    Article  CAS  Google Scholar 

  19. Yang, J. et al. Advancing osmotic power generation by covalent organic framework monolayer. Nat. Nanotechnol. 17, 622–628 (2022).

    Article  CAS  Google Scholar 

  20. Cheng, B., Zhong, Y., Qiu, Y., Vaikuntanathan, S. & Park, J. Giant gateable osmotic power generation from a goldilocks two-dimensional polymer. J. Am. Chem. Soc. 145, 5261–5269 (2023).

    Article  CAS  Google Scholar 

  21. Hou, S. et al. Free-standing covalent organic framework membrane for high-efficiency salinity gradient energy conversion. Angew. Chem. Int. Ed. 60, 9925–9930 (2021).

    Article  CAS  Google Scholar 

  22. Wang, K. et al. Monolayer-assisted surface-initiated Schiff-base-mediated aldol polycondensation for the synthesis of crystalline sp2 carbon-conjugated covalent organic framework thin films. J. Am. Chem. Soc. 145, 5203–5210 (2023).

    Article  CAS  Google Scholar 

  23. Zuo, H. et al. Bioinspired gradient covalent organic framework membranes for ultrafast and asymmetric solvent transport. Adv. Mater. 36, 2305755 (2024).

    Article  CAS  Google Scholar 

  24. Zhang, P. et al. Covalent organic framework nanofluidic membrane as a platform for highly sensitive bionic thermosensation. Nat. Commun. 12, 1844 (2021).

    Article  CAS  Google Scholar 

  25. Lin, Z. et al. Tuning the p-orbital electron structure of s-block metal Ca enables a high-performance electrocatalyst for oxygen reduction. Adv. Mater. 33, e2107103 (2021).

    Article  Google Scholar 

  26. Wang, Q. et al. Asymmetric coordination induces electron localization at Ca sites for robust CO2 electroreduction to CO. Adv. Mater. 35, e2300695 (2023).

    Article  Google Scholar 

  27. Man, Z. et al. Serosa-mimetic nanoarchitecture membranes for highly efficient osmotic energy generation. J. Am. Chem. Soc. 143, 16206–16216 (2021).

    Article  CAS  Google Scholar 

  28. Li, C. et al. One porphyrin per chain self-assembled helical ion-exchange channels for ultrahigh osmotic energy vonversion. J. Am. Chem. Soc. 144, 9472–9478 (2022).

    Article  CAS  Google Scholar 

  29. Huang, Z. et al. Essence of the enhanced osmotic energy conversion in a covalent organic framework monolayer. ACS Nano 16, 17149–17156 (2022).

    Article  CAS  Google Scholar 

  30. Zhou, J. et al. Maximizing ion permselectivity in MXene/MOF nanofluidic membranes for high‐efficient blue energy generation. Adv. Funct. Mater. 32, 2209767 (2022).

    Article  CAS  Google Scholar 

  31. Hao, J. et al. A euryhaline-fish-inspired salinity self-adaptive nanofluidic diode leads to high-performance blue energy harvesters. Adv. Mater. 34, e2203109 (2022).

    Article  Google Scholar 

  32. Chen, Y. et al. Large-scale, ultrastrong Cu2+ cross-linked sodium alginate membrane for effective salinity gradient power conversion. ACS Appl. Polym. Mater. 3, 3902–3910 (2021).

    Article  CAS  Google Scholar 

  33. Safaei, J. et al. Vacancy engineering for high-efficiency nanofluidic osmotic energy generation. J. Am. Chem. Soc. 145, 2669–2678 (2023).

    Article  CAS  Google Scholar 

  34. Zhang, F., Yu, J., Si, Y. & Ding, B. Meta-aerogel ion motor for nanofluid osmotic energy harvesting. Adv. Mater. 35, e2302511 (2023).

    Article  Google Scholar 

  35. Jiang, Y. et al. Surface diffusion enhanced ion transport through two-dimensional nanochannels. Sci. Adv. 9, eadi8493 (2023).

    Article  CAS  Google Scholar 

  36. Zhou, S. et al. Surfactant-assisted sulfonated covalent organic nanosheets: extrinsic charge for improved ion transport and salinity-gradient energy harvesting. Adv. Mater. 35, 2208640 (2023).

    Article  CAS  Google Scholar 

  37. Liang, Q. et al. Efficient osmosis-powered production of green hydrogen. Nat. Sustain. 7, 628–639 (2024).

    Article  Google Scholar 

  38. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  39. Humphrey, W., Dalke, A. & Schulten, K. VMD–Visual Molecular Dynamics. J. Molec. Graphics 14, 33–38 (1996).

    Article  CAS  Google Scholar 

  40. Guo, X. et al. Effect of alloying elements on the interface of fcc-Fe/Ni3Al by first principle calculations. Comp. Mater. Sci. 214, 111673 (2022).

    Article  CAS  Google Scholar 

  41. Mitra, S. et al. Self-exfoliated guanidinium-based ionic covalent organic nanosheets (iCONs). J. Am. Chem. Soc. 138, 2823–2828 (2016).

    Article  CAS  Google Scholar 

  42. Lu, T. Sobtop Version 1.0 (dev3.1). http://sobereva.com/soft/Sobtop (2024).

  43. Rakhshani, H., Dehghanian, E. & Rahati, A. Enhanced GROMACS: toward a better numerical simulation framework. J. Mol. Model 25, 355 (2019).

    Article  Google Scholar 

  44. Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support by the National Natural Science Foundation of China (grant numbers 52272182, 52472294 and 52073009 to Y. Zhu), the Youth Innovation Promotion Association of CAS (grant number 2021029 to Y. Zhou) and the International Partnership Program of the Chinese Academy of Sciences for Future Network Project (174GJHZ2022047FN to Y. Zhou). We are grateful to the Analysis & Testing Center of Beihang University for the facilities, and the scientific and technical assistance. We gratefully acknowledge the assistance provided by Beam Lines BL14W1 (X-ray absorption fine structure) at Shanghai Synchrotron Radiation Facility for conducting synchrotron-based measurements. We also thank G. M. Liu and M. Wang from the Institute of Chemistry Chinese Academy of Sciences for their contributions to GIWAXS characterization and analyses. In addition, we thank J. Zhu from the National Center for Nanoscience and Technology for his assistance with computation.

Author information

Authors and Affiliations

Authors

Contributions

The idea and experimental design were developed by W.J. and Y. Zhu with project supervision provided by Y. Zhu. W.J. conducted the experiments and data analysis, while Y. Zhu, W.J., X.W. and Y. Zhou contributed to the discussion of the numerical and molecular dynamics simulations, offering valuable suggestions. X.Z. contributed to structural and molecular dynamics simulations of materials, and J.H. assisted with the computational numerical simulations. In addition, J.Z., M.F. and D.Z. helped with XAFS data analysis and characterization, while H.W. and L.J. participated in discussion of the characterization results. Manuscript organization and writing were undertaken by W.J. with contributions from Y. Zhu in terms of discussion and revision. All authors participated in the manuscript discussion.

Corresponding authors

Correspondence to Huanting Wang, Yahong Zhou or Ying Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Anthony Straub, Li-Hsien Yeh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–96, Tables 1–14, Text, and Materials and Methods.

Reporting Summary

Source data

Source Data Fig. 1

Microstructural properties of membranes, source data.

Source Data Fig. 2

Energy conversion performances of membrane, source data.

Source Data Fig. 3

Molecular dynamics simulations results, source data.

Source Data Fig. 4

Universal strategy for M-COF membrane.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Zhou, J., Zhong, X. et al. Axial alignment of covalent organic framework membranes for giant osmotic energy harvesting. Nat Sustain 8, 446–455 (2025). https://doi.org/10.1038/s41893-024-01493-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-024-01493-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing