Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trading off regional and overall energy system design flexibility in the net-zero transition

Abstract

The transition to net-zero emissions in Europe is determined by a patchwork of country-level and European Union-wide policy, creating coordination challenges in an interconnected system. Here we use an optimization model to map out near-optimal energy system designs for 2050, focusing on the planning flexibility of individual regions while maintaining overall system robustness against different weather years, cost assumptions and land-use limitations. Our results reveal extensive flexibility at a regional level, where only few technologies (solar around the Adriatic and wind on the British Isles and in Germany) cannot be substituted. National policymakers can influence renewable energy export and hydrogen strategies significantly, provided they coordinate this with the remaining European system. However, stronger commitment to solar in southern Europe and Germany unlocks more design options for Europe overall. These results on regional trade-offs facilitate more meaningful policy discussions that are crucial in the transition to a sustainable energy system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Robust trade-offs between annualized onshore wind and solar investment in Europe, consistent with the net-zero emissions target for 2050.
Fig. 2: Comparison of minimal regional and European robust investment (in bn EUR, annualized) and average optimal investment across all scenarios.
Fig. 3: Interactions between wind power investment on the British Isles and investment in renewable energy on continental Europe.
Fig. 4: The effect of renewable energy investment in Germany on country-level and continental design flexibility.
Fig. 5: Effects of regional investment decisions on the design flexibility of the rest of the European system.
Fig. 6: Minimum and maximum potential ranges of total wind power investment in different regions, as a function of wind power investment outside the respective regions.

Similar content being viewed by others

Data availability

Links to data used in this article are available via GitHub at https://github.com/koen-vg/enabling-agency/tree/v0; all data used are open access (various licences).

Code availability

The code used to reproduce the results of this study is available via GitHub at https://github.com/koen-vg/enabling-agency/tree/v0. All code is open source (licensed under GPL v3.0 and MIT).

References

  1. Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 establishing the framework for achieving climate neutrality and amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’) EUR-Lex http://data.europa.eu/eli/reg/2021/1119/oj/eng (2021).

  2. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions: the European Green Deal. Communication COM/2019/640 (European Commission, 2019); https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52019DC0640

  3. Hofbauer, L., McDowall, W. & Pye, S. Challenges and opportunities for energy system modelling to foster multi-level governance of energy transitions. Renew. Sustain. Energy Rev. 161, 112330 (2022).

    Article  Google Scholar 

  4. Shu, D. Y. et al. Overcoming the central planner approach—bilevel optimization of the European energy transition. iScience https://doi.org/10.1016/j.isci.2024.110168 (2024).

  5. Kendziorski, M., Göke, L., von Hirschhausen, C., Kemfert, C. & Zozmann, E. Centralized and decentral approaches to succeed the 100% energiewende in Germany in the European context—a model-based analysis of generation, network, and storage investments. Energy Policy 167, 113039 (2022).

    Article  Google Scholar 

  6. Durakovic, G., del Granado, P. C. & Tomasgard, A. Powering Europe with North Sea offshore wind: the impact of hydrogen investments on grid infrastructure and power prices. Energy 263, 125654 (2023).

    Article  Google Scholar 

  7. Strambo, C., Nilsson, M. & Månsson, A. Coherent or inconsistent? Assessing energy security and climate policy interaction within the European Union. Energy Res. Soc. Sci. 8, 1–12 (2015).

    Article  Google Scholar 

  8. DeCarolis, J. F. Using modeling to generate alternatives (MGA) to expand our thinking on energy futures. Energy Econ. 33, 145–152 (2011).

    Article  Google Scholar 

  9. Neumann, F. & Brown, T. The near-optimal feasible space of a renewable power system model. Electr. Power Syst. Res. 190, 106690 (2021).

    Article  Google Scholar 

  10. Pedersen, T. T., Victoria, M., Rasmussen, M. G. & Andresen, G. B. Modeling all alternative solutions for highly renewable energy systems. Energy 234, 121294 (2021).

    Article  Google Scholar 

  11. Grochowicz, A., van Greevenbroek, K., Benth, F. E. & Zeyringer, M. Intersecting near-optimal spaces: European power systems with more resilience to weather variability. Energy Econ. 118, 106496 (2023).

    Article  Google Scholar 

  12. Neumann, F. & Brown, T. Broad ranges of investment configurations for renewable power systems, robust to cost uncertainty and near-optimality. iScience 26, 106702 (2023).

    Article  Google Scholar 

  13. Pickering, B., Lombardi, F. & Pfenninger, S. Diversity of options to eliminate fossil fuels and reach carbon neutrality across the entire European energy system. Joule 6, 1253–1276 (2022).

    Article  CAS  Google Scholar 

  14. Vågerö, O., Jackson Inderberg, T. H. & Zeyringer, M. The effects of fair allocation principles on energy system model designs. Environ. Res. Energy https://doi.org/10.1088/2753-3751/ad8e6a (2024).

  15. Pedersen, T. T., Andersen, M. S., Victoria, M. & Andresen, G. B. Using modeling all alternatives to explore 55% decarbonization scenarios of the European electricity sector. iScience 26, 106677 (2023).

    Article  Google Scholar 

  16. Sasse, J.-P. & Trutnevyte, E. Cost-effective options and regional interdependencies of reaching a low-carbon European electricity system in 2035. Energy 282, 128774 (2023).

    Article  Google Scholar 

  17. Brown, T., Schlachtberger, D., Kies, A., Schramm, S. & Greiner, M. Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system. Energy 160, 720–739 (2018).

    Article  Google Scholar 

  18. Neumann, F., Zeyen, E., Victoria, M. & Brown, T. The potential role of a hydrogen network in Europe. Joule 7, 1793–1817 (2023).

    Article  CAS  Google Scholar 

  19. WindEurope. Wind energy in Europe: 2022 statistics and the outlook for 2023–2027. Windflix https://windeurope.org/intelligence-platform/product/wind-energy-in-europe-2022-statistics-and-the-outlook-for-2023-2027/ (2023).

  20. Schmela, M. European Market Outlook for Solar Power 2022–2026 (SolarPower Europe, 2022); https://www.solarpowereurope.org/press-releases/new-report-reveals-eu-solar-power-soars-by-almost-50-in-2022

  21. Eurostat. Supply, transformation and consumption of gas. Eurostat https://ec.europa.eu/eurostat/databrowser/view/nrg_cb_gas/default/table?lang=en (2023).

  22. Department for Energy Security & Net Zero (UK). Natural gas supply and consumption. Energy Trends https://assets.publishing.service.gov.uk/media/65130c71b23dad000de706d5/ET_4.1_SEP_23.xlsx (2023).

  23. Ressursrapport 2022 (Oljedirektoratet, 2022); https://www.sodir.no/aktuelt/publikasjoner/rapporter/ressursrapporter/ressursrapport-2022/

  24. Eurostat. Energy imports dependency (nrg_ind_id). Eurostat (2024).

  25. Europe’s 2040 Climate Target and Path to Climate Neutrality by 2050 Building a Sustainable, Just and Prosperous Society (European Commission, 2024); https://eur-lex.europa.eu/resource.html?uri=cellar:6c154426-c5a6-11ee-95d9-01aa75ed71a1.0001.02/DOC_1&format=PDF

  26. Germany—Draft Updated NECP 2021–2030 (European Commission, 2023); https://commission.europa.eu/publications/germany-draft-updated-necp-2021-2030_en

  27. British Energy Security Strategy (British Government, 2022); https://www.gov.uk/government/publications/british-energy-security-strategy

  28. France—Draft Updated NECP 2021–2030 (European Commission, 2023); https://commission.europa.eu/publications/france-draft-updated-necp-2021-2030_en

  29. Olje- og energidepartementet og Klima- og miljødepartementet. Regjeringens hydrogenstrategi—på vei mot lavutslippssamfunnet Report No. Y-0127 B (Norwegian Government, 2020).

  30. Minister of Climate, Energy and Utilities of the Kingdom of Denmark, Minister for Energy of the Kingdom of Belgium, The Minister for Climate and Energy Policy of the Netherlands & The Minister for Economic Affairs and Climate Action of the Federal Republic of Germany. The Declaration of Energy Ministers on the North Sea as a Green Power Plant of Europe (2022); https://www.bmwk.de/Redaktion/DE/Downloads/Energie/20220518-declaration-of-energy-ministers.pdf?__blob=publicationFile&v=10

  31. Sweden—Draft Updated NECP 2021–2030 (European Commission, 2023); https://commission.europa.eu/document/download/bdd2bbe5-eefd-4d22-a729-2a74cbb30e1f_en?filename=EN_SWEDEN

  32. Denmark—Draft Updated NECP 2021–2030 (European Commission, 2023); https://commission.europa.eu/document/download/31895e48-37c3-46fe-8a8f-8f61fbff6724_en?filename=EN_DENMARK

  33. Finland—Draft Updated NECP 2021–2030 (European Commission, 2023); https://commission.europa.eu/document/download/78c7f4bd-a3ca-4e83-8732-65f1e0d0baaa_en?filename=DRAFT

  34. Schlachtberger, D. P., Brown, T., Schramm, S. & Greiner, M. The benefits of cooperation in a highly renewable European electricity network. Energy 134, 469–481 (2017).

    Article  Google Scholar 

  35. Hörsch, J. & Brown, T. The role of spatial scale in joint optimisations of generation and transmission for European highly renewable scenarios. In 2017 14th International Conference on the European Energy Market (EEM), Dresden, Germany 1–7 (2017); https://doi.org/10.1109/EEM.2017.7982024

  36. Tröndle, T., Lilliestam, J., Marelli, S. & Pfenninger, S. Trade-offs between geographic scale, cost, and infrastructure requirements for fully renewable electricity in Europe. Joule 4, 1929–1948 (2020).

    Article  Google Scholar 

  37. Perera, M. & Tansini, C. Land for Renewables: Briefing on Spatial Requirements for a Sustainable Energy Transition in Europe (European Environmental Bureau, 2024); https://eeb.org/library/land-for-renewables-briefing-on-spatial-requirements-for-a-sustainable-energy-transition-in-europe/

  38. Spain—Draft Updated NECP 2021–2030 (European Commission, 2023); https://commission.europa.eu/document/download/9ea170ec-fdce-49cb-9424-4ee95db33a4a_en?filename=EN_SPAIN

  39. Portugal—Draft Updated NECP 2021–2030 (European Commission, 2023); https://commission.europa.eu/document/download/bbcdfa78-5d50-474d-bd7f-16bd804a8388_en?filename=EN_PORTUGAL

  40. European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A Hydrogen Strategy for a Climate-Neutral Europe Communication COM/2020/301 (European Union, 2020); https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0301

  41. UK Hydrogen Strategy (Secretary of State for Business, Energy & Industrial Strategy, 2021).

  42. Fortschreibung der Nationalen Wasserstoffstrategie (Bundesministerium für Wirtschaft und Klimaschutz, 2023); https://www.bmwk.de/Redaktion/DE/Wasserstoff/Downloads/Fortschreibung.pdf?__blob=publicationFile&v=4

  43. Seck, G. S. et al. Hydrogen and the decarbonization of the energy system in Europe in 2050: a detailed model-based analysis. Renew. Sustain. Energy Rev. 167, 112779 (2022).

    Article  CAS  Google Scholar 

  44. Kountouris, I. et al. A unified European hydrogen infrastructure planning to support the rapid scale-up of hydrogen production. Nat. Commun. 15, 5517 (2024).

    Article  CAS  Google Scholar 

  45. Lombardi, F., Pickering, B., Colombo, E. & Pfenninger, S. Policy decision support for renewables deployment through spatially explicit practically optimal alternatives. Joule 4, 2185–2207 (2020).

    Article  Google Scholar 

  46. Trutnevyte, E. Does cost optimization approximate the real-world energy transition? Energy 106, 182–193 (2016).

    Article  Google Scholar 

  47. Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016).

    Article  CAS  Google Scholar 

  48. Heck, V., Gerten, D., Lucht, W. & Popp, A. Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nat. Clim. Change 8, 151–155 (2018).

    Article  CAS  Google Scholar 

  49. Odenweller, A., Ueckerdt, F., Nemet, G. F., Jensterle, M. & Luderer, G. Probabilistic feasibility space of scaling up green hydrogen supply. Nat. Energy 7, 854–865 (2022).

    Article  Google Scholar 

  50. Kazlou, T., Cherp, A. & Jewell, J. Feasible deployment of carbon capture and storage and the requirements of climate targets. Nat. Clim. Change https://doi.org/10.1038/s41558-024-02104-0 (2024).

  51. Müller, V. P., Riemer, M. & Eckstein, J. Are Carbon-Based E-Fuels a Viable Path to Decarbonization?—A Critical Comparison of Global Supply and Demand. In 2024 20th International Conference on the European Energy Market (EEM) 1–7 (2024); https://doi.org/10.1109/EEM60825.2024.10608862

  52. de la Esperanza Mata Pérez, M., Scholten, D. & Smith Stegen, K. The multi-speed energy transition in Europe: opportunities and challenges for EU energy security. Energy Strategy Rev. 26, 100415 (2019).

    Article  Google Scholar 

  53. Tosatto, A., Beseler, X. M., Østergaard, J., Pinson, P. & Chatzivasileiadis, S. North Sea energy islands: impact on national markets and grids. Energy Policy 167, 112907 (2022).

    Article  Google Scholar 

  54. Harmonised indices of consumer prices (HICP)—all items (Eurostat, accessed 29 November 2023); https://ec.europa.eu/eurostat/databrowser/view/teicp000/default/table?lang=en

  55. Pineda, S. & Morales, J. M. Chronological time-period clustering for optimal capacity expansion planning with storage. IEEE Trans. Power Syst. 33, 7162–7170 (2018).

    Article  Google Scholar 

  56. Kotzur, L., Markewitz, P., Robinius, M. & Stolten, D. Impact of different time series aggregation methods on optimal energy system design. Renew. Energy 117, 474–487 (2018).

    Article  Google Scholar 

  57. Brown, T., Hörsch, J. & Schlachtberger, D. PyPSA: python for power system analysis. J. Open Res. Software 6, 4 (2018).

    Article  Google Scholar 

  58. Zeyringer, M., Price, J., Fais, B., Li, P.-H. & Sharp, E. Designing low-carbon power systems for Great Britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather. Nature Energy 3, 395–403 (2018).

    Article  CAS  Google Scholar 

  59. Patankar, N., Sarkela-Basset, X., Schivley, G., Leslie, E. & Jenkins, J. Land use trade-offs in decarbonization of electricity generation in the American West. Energy Clim. Change 4, 100107 (2023).

    Article  CAS  Google Scholar 

  60. Technology Data for Generation of Electricity and District Heating (Danish Energy Agency, accessed 21 September 2023); https://ens.dk/technologydata

  61. Hörsch, J., Hofmann, F., Schlachtberger, D. & Brown, T. PyPSA-Eur: an open optimisation model of the European transmission system. Energy Strategy Rev. 22, 207–215 (2018).

    Article  Google Scholar 

  62. German Bundestag. Gesetz zu Sofortmaßnahmen für einen beschleunigten Ausbau der erneuerbaren Energien und weiteren Maßnahmen im Stromsektor (Bundesanzeiger Verlag, 2022); https://dejure.org/BGBl/2022/BGBl._I_S._1237

  63. Hersbach, H. et al. ERA5 hourly data on single levels from 1940 to present. Climate Data Store https://doi.org/10.24381/cds.adbb2d47 (2023).

  64. Ireland—Draft Updated NECP 2021–2030 (European Commission, 2023); https://commission.europa.eu/document/download/4b741649-7249-47d6-b62a-b123edd49ae5_en?filename=Ireland

  65. Electricity statistics (MW/GWh) by country/area, technology, data type, grid connection and year (IRENA); https://pxweb.irena.org/pxweb/en/IRENASTAT

  66. Arbeitsgruppe Erneuerbare Energien-Statistik. Erneuerbare Energien in Deutschland, Daten zur Entwicklung im Jahr 2024 (Umweltbundesamt, accessed 16 April 2025); https://www.umweltbundesamt.de/publikationen/erneuerbare-energien-in-deutschland-2024

Download references

Acknowledgements

A.G., F.E.B. and M.Z. acknowledge funding by UiO:Energy and Environment (SPATUS). ERA5 reanalysis data were downloaded from the Copernicus Climate Change Service (C3S)63. The results contain modified Copernicus Climate Change Service information 2020. Neither the European Commission nor ECMWF is responsible for any use that may be made of the Copernicus information or data it contains.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: all authors. Methodology: K.v.G. and A.G. Coding and analysis: K.v.G. and A.G. Writing—original draft: K.v.G. and A.G. Writing—review and editing: all authors. Supervision: M.Z. and F.E.B.

Corresponding author

Correspondence to Koen van Greevenbroek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Stathis Devves, Ioannis Kountouris, Fabian Neumann, Tim Tröndle, Marta Victoria and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–34, Tables 1 and 2, and Notes 1–6.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Greevenbroek, K., Grochowicz, A., Zeyringer, M. et al. Trading off regional and overall energy system design flexibility in the net-zero transition. Nat Sustain 8, 629–641 (2025). https://doi.org/10.1038/s41893-025-01556-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-025-01556-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing