Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A reconfigurable heterostructure transistor array for monocular 3D parallax reconstruction

Abstract

Sensors that are capable of three-dimensional detection of depth field information in the spatial ___domain are of potential use in applications such as robotics, satellite imaging and medical assistance. However, current techniques require a precise light source for complex phase detection and diffraction, or involve static multidirectional reflection imaging. Here we report a reconfigurable heterostructure transistor array for monocular three-dimensional parallax reconstruction. The phototransistors are based on heterostructures of indium gallium zinc oxide and tungsten diselenide, and can operate as n-type, p-type or ambipolar transistors depending on electrostatic modulation. The arrays can be switched between two modes: a real-time constant perception mode for static imaging and a spatiotemporal planar configuration mode with memory for dynamic imaging. To switch between the modes, the dominant carrier polarity is changed via a complementary metal–oxide–semiconductor-compatible multiterminal addressing architecture. We show that the system can be used for three-dimensional morphology reconstruction, two-dimensional depth field mapping and multi-view coupling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reconfigurable PCHT architecture.
Fig. 2: PCHT mode-dependent optoelectronic performance.
Fig. 3: 3D parallax reconstruction methodology.
Fig. 4: 3D parallax reconstruction demonstration.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available via Figshare at https://doi.org/10.6084/m9.figshare.26764015 (ref. 41). Source data are provided with this paper.

Code availability

The code used for image reconstruction is available from the corresponding author on reasonable request.

References

  1. Wu, J. et al. An integrated imaging sensor for aberration-corrected 3D photography. Nature 612, 62–71 (2022).

    Article  MATH  Google Scholar 

  2. Lien, M. et al. Ranging and light field imaging with transparent photodetectors. Nat. Photonics 14, 143–148 (2020).

    Article  MATH  Google Scholar 

  3. Feng, X., Ma, Y. & Gao, L. Compact light field photography towards versatile three-dimensional vision. Nat. Commun. 13, 3333 (2022).

    Article  MATH  Google Scholar 

  4. Jing, X. et al. Single-shot 3D imaging with point cloud projection based on metadevice. Nat. Commun. 13, 7842 (2022).

    Article  MATH  Google Scholar 

  5. Huang, L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013).

    Article  MATH  Google Scholar 

  6. Park, J., Lee, K. & Park, Y. Ultrathin wide-angle large-area digital 3D holographic display using a non-periodic photon sieve. Nat. Commun. 10, 1304 (2019).

    Article  MATH  Google Scholar 

  7. Vamvakeros, A. et al. 5D operando tomographic diffraction imaging of a catalyst bed. Nat. Commun. 9, 4751 (2018).

    Article  MATH  Google Scholar 

  8. Li, J. et al. Rapid sensing of hidden objects and defects using a single-pixel diffractive terahertz sensor. Nat. Commun. 14, 6791 (2023).

    Article  MATH  Google Scholar 

  9. Cherukara, M. J. et al. Three-dimensional X-ray diffraction imaging of dislocations in polycrystalline metals under tensile loading. Nat. Commun. 9, 3776 (2018).

    Article  MATH  Google Scholar 

  10. Yi, L., Hou, B., Zhao, H. & Liu, X. X-ray-to-visible light-field detection through pixelated colour conversion. Nature 618, 281–286 (2023).

    Article  MATH  Google Scholar 

  11. Shen, Z. et al. Monocular metasurface camera for passive single-shot 4D imaging. Nat. Commun. 14, 1035 (2023).

    Article  MATH  Google Scholar 

  12. Huang, X. et al. Polarization structured light 3D depth image sensor for scenes with reflective surfaces. Nat. Commun. 14, 6855 (2023).

    Article  MATH  Google Scholar 

  13. Fang, J., Huang, K., Wu, E., Yan, M. & Zeng, H. Mid-infrared single-photon 3D imaging. Light Sci. Appl. 12, 144 (2023).

    Article  Google Scholar 

  14. Zhang, X., Kwon, K., Henriksson, J., Luo, J. & Wu, M. C. A large-scale microelectromechanical systems-based silicon photonics LiDAR. Nature 603, 253–258 (2022).

    Article  MATH  Google Scholar 

  15. Rogers, C. et al. A universal 3D imaging sensor on a silicon photonics platform. Nature 590, 256–261 (2021).

    Article  MATH  Google Scholar 

  16. Goossens, S. et al. Broadband image sensor array based on graphene-CMOS integration. Nat. Photonics 11, 366–371 (2017).

    Article  MATH  Google Scholar 

  17. Zhang, Z. A flexible new technique for camera calibration. IEEE T. Pattern. Anal. 22, 1330–1334 (2000).

    Article  MATH  Google Scholar 

  18. Tachella, J. et al. Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers. Nat. Commun. 10, 4984 (2019).

    Article  MATH  Google Scholar 

  19. Zhou, K. et al. Parallelized computational 3D video microscopy of freely moving organisms at multiple gigapixels per second. Nat. Photon. 17, 442–450 (2023).

    Article  MATH  Google Scholar 

  20. Siavashani, M. et al. 3D imaging using scanning diffractometry. Sci. Rep. 11, 482 (2021).

    Article  MATH  Google Scholar 

  21. Scholler, J. et al. Dynamic full-field optical coherence tomography: 3D live-imaging of retinal organoids. Light Sci. Appl. 9, 140 (2020).

    Article  Google Scholar 

  22. Ozyesil, O., Voroninski, V., Basri, R. & Singer, A. A survey of structure from motion. Acta Numer. 26, 305–364 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  23. Schonberger, J. L. & Frahm, J. Structure-from-motion revisited. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 4104–4113 (IEEE, 2016).

  24. Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020).

    Article  Google Scholar 

  25. Lee, J. et al. Thin-film image sensors with a pinned photodiode structure. Nat. Electron. 6, 590–598 (2023).

    Article  MATH  Google Scholar 

  26. Pan, C. et al. Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nat. Electron. 3, 383–390 (2020).

    Article  Google Scholar 

  27. Choi, H. et al. A steep switching WSe2 impact ionization field-effect transistor. Nat. Commun. 13, 6076 (2022).

    Article  MATH  Google Scholar 

  28. Seyler, K. L. et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat. Nanotechnol. 10, 407–411 (2015).

    Article  MATH  Google Scholar 

  29. Pudasaini, P. R. et al. High-performance multilayer WSe2 field-effect transistors with carrier type control. Nano Res. 11, 722–730 (2018).

    Article  MATH  Google Scholar 

  30. Cong, X. et al. Interplay of valley polarized dark trion and dark exciton-polaron in monolayer WSe2. Nat. Commun. 14, 5657 (2023).

    Article  MATH  Google Scholar 

  31. Ren, Y. et al. Recent advances in ambipolar transistors for functional applications. Adv. Funct. Mater. 29, 1902105 (2019).

    Article  Google Scholar 

  32. Liao, F. et al. Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 5, 84–91 (2022).

    Article  MATH  Google Scholar 

  33. Li, Z. et al. Parallel photoelectron storage and visual preprocessing based on nanowire defect engineering for image degradation. Adv. Funct. Mater. 34, 2304119 (2024).

    Article  Google Scholar 

  34. Kellnhofer, P. et al. Motion parallax in stereo 3D: model and applications. ACM T. Graphic. 35, 176 (2016).

    Article  MATH  Google Scholar 

  35. Sun, X. et al. Reconfigurable logic-in-memory architectures based on a two-dimensional van der Waals heterostructure device. Nat. Electron. 5, 752–760 (2022).

    Article  MATH  Google Scholar 

  36. Chen, Y. et al. Ferroelectric-tuned van der Waals heterojunction with band alignment evolution. Nat. Commun. 12, 4030 (2021).

    Article  MATH  Google Scholar 

  37. Liu, K. et al. An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron. 5, 761–773 (2022).

    Article  MATH  Google Scholar 

  38. Li, P. et al. Reconfigurable optoelectronic transistors for multimodal recognition. Nat. Commun. 15, 3257 (2024).

    Article  MATH  Google Scholar 

  39. Lowe, D. G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 91–110 (2004).

    Article  MATH  Google Scholar 

  40. Harris, C. & Stephens, M. A combined corner and edge detector. In Proc. Alvey Vision Conference (ed. Taylor, C. J.) 147–151 (Alvey Vision Club, 1988).

  41. Li, Z. Source data. Figshare https://doi.org/10.6084/m9.figshare.26764015 (2024).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 62422409, 62174152 and 62374159). The authors acknowledge financial support from Open Fund of State Key Laboratory of Infrared Physics (grant no. SITP-NLIST-YB-2024-04) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (grant no. 2020115). Thanks to J. Chang (Institute of Semiconductors, CAS) for technical guidance of etching process and thanks to J. Chen (Institute of Semiconductors, CAS) for technical guidance of spectrum characterization.

Author information

Authors and Affiliations

Authors

Contributions

Z. Li, Z. Lou and L.W. designed the research, Z. Li and L.W. wrote the paper, Z. Li, H.X., Y.Z., L. Liu and L. Li performed the experiments, Z. Li and L. Li performed the first-principles calculations and simulation. Z. Li, L. Liu and Z. Lou analysed the data. Z. Lou and L.W. revised the paper, Z. Lou and L.W. supervised the project. All authors contributed to research and reviewed the manuscript.

Corresponding authors

Correspondence to Zheng Lou or Lili Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Jongchan Park and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4, Figs. 1–26 and Tables 1 and 2.

Supplementary Data

Source data for supplementary figures.

Source data

Source Data Figs. 1–4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Xu, H., Zheng, Y. et al. A reconfigurable heterostructure transistor array for monocular 3D parallax reconstruction. Nat Electron 8, 46–55 (2025). https://doi.org/10.1038/s41928-024-01261-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-024-01261-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing