Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cation effect on the elementary steps of the electrochemical CO reduction reaction on Cu

Abstract

The nature of the cations in an electrolyte has a substantial impact on the performance of the electrochemical CO2 and CO reduction reaction (CO(2)RR), however, its mechanism at the molecular level remains the subject of debate. Major gaps in our understanding include how cations affect key physicochemical variables at electrochemical interfaces and the elementary steps of the CO(2)RR. In this work, we have quantitatively determined the impact of cations on the enthalpy and entropy of CO adsorption on Cu under electrochemical conditions. CO adsorption becomes increasingly unfavourable in the sequence Li+ > Na+ > K+ > Cs+ with a substantial enthalpy–entropy compensation effect. Importantly, cations affect the stability of the initial and transition states of the CORR in opposite directions. Our results provide insights into the effect of cations on individual elementary steps in the CORR and demonstrate that the ability to stabilize the transition state in the conversion of adsorbed CO is a decisive factor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Enthalpy and entropy of CO adsorption determined by SEIRAS.
Fig. 2: AIMD simulations of CO adsorption on Cu(100) with Li+ and Cs+.
Fig. 3: Correlation between the relative enthalpy and entropy of CO adsorption on Cu.
Fig. 4: Electrochemical activation parameters in MOH (M = Li, Na, K and Cs).
Fig. 5: Cation effect on the standard free energies of two elementary steps.
Fig. 6: Influence of cation concentration on the elementary steps of the CORR.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The Python script to run the AlMD simulations is included in Supplementary Data 2.

References

  1. Luna, P. D. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    Article  PubMed  Google Scholar 

  2. Jouny, M., Hutchings, G. S. & Jiao, F. Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nat. Catal. 2, 1062–1070 (2019).

    Article  CAS  Google Scholar 

  3. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Hori, Y., KiKuchi, K., Murata, A. & Suzuki, S. Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution. Chem. Lett. 15, 897–898 (1986).

    Article  Google Scholar 

  5. Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

    Article  CAS  Google Scholar 

  6. Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Malkani, A. S. et al. Understanding the electric and nonelectric field components of the cation effect on the electrochemical CO reduction reaction. Sci. Adv. 6, eabd2569 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, J. et al. Hydroxide is not a promoter of C2+ product formation in the electrochemical reduction of CO on copper. Angew. Chem. Int. Ed. 59, 4464–4469 (2020).

    Article  CAS  Google Scholar 

  9. Monteiro, M. C. O. et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4, 654–662 (2021).

    Article  CAS  Google Scholar 

  10. Ovalle, V. J., Hsu, Y., Agrawal, N., Janik, M. J. & Waegele, M. M. Correlating hydration free energy and specific adsorption of alkali metal cations during CO2 electroreduction on Au. Nat. Catal. 5, 624–632 (2022).

    Article  CAS  Google Scholar 

  11. Strmcnik, D. et al. The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nat. Chem. 1, 466–472 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Huang, B. et al. Cation- and pH-dependent hydrogen evolution and oxidation reaction kinetics. JACS Au 1, 1674–1687 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ringe, S. et al. Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 12, 3001–3014 (2019).

    Article  CAS  Google Scholar 

  14. Shin, S. et al. A unifying mechanism for cation effect modulating C1 and C2 productions from CO2 electroreduction. Nat. Commun. 13, 5482 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Singh, M. R. et al. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 138, 13006–13013 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Li, J., Li, X., Gunathunge, C. M. & Waegele, M. M. Hydrogen bonding steers the product selectivity of electrocatalytic CO reduction. Proc. Natl Acad. Sci. USA 116, 9220–9229 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, H., Gao, J., Raciti, D. & Hall, A. S. Promoting Cu-catalyzed CO2 electroreduction to multicarbon products by tuning the activity of H2O. Nat. Catal. 6, 807–817 (2023).

    Article  CAS  Google Scholar 

  18. Xiong, H. et al. Correlating the experimentally determined CO adsorption enthalpy with the electrochemical CO reduction performance on Cu surfaces. Angew. Chem. Int. Ed. 62, e202218447 (2023).

    Article  CAS  Google Scholar 

  19. Schouten, K. J. P., Gallent, E. P. & Koper, M. T. M. The influence of pH on the reduction of CO and CO2 to hydrocarbons on copper electrodes. J. Electroanal. Chem. 716, 53–57 (2014).

    Article  CAS  Google Scholar 

  20. Gunathunge, C. M., Ovalle, V. J., Li, Y., Janik, M. J. & Waegele, M. M. Existence of an electrochemically inert CO population on Cu electrodes in alkaline pH. ACS Catal. 8, 7507–7516 (2018).

    Article  CAS  Google Scholar 

  21. Haynes, W. M. (ed.) CRC Handbook of Chemistry and Physics 97th edn (CRC, 2016).

  22. Kumeda, T., Tajiri, H., Sakata, O., Hoshi, N. & Nakamura, M. Effect of hydrophobic cations on the oxygen reduction reaction on single‒crystal platinum electrodes. Nat. Commun. 9, 4378 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ferrari, A. M., Ugliengo, P. & Garrone, E. Ab initio study of the adducts of carbon monoxide with alkaline cations. J. Chem. Phys. 105, 4129–4139 (1996).

    Article  CAS  Google Scholar 

  24. Malkani, A. S., Anibal, J. & Xu, B. Cation effect on interfacial CO2 concentration in the electrochemical CO2 reduction reaction. ACS Catal. 10, 14871–14876 (2020).

    Article  CAS  Google Scholar 

  25. Li, J. et al. Electrokinetic and in situ spectroscopic investigations of CO electrochemical reduction on copper. Nat. Commun. 12, 3264 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Waegele, M. M., Gunathunge, C. M., Li, J. & Li, X. How cations affect the electric double layer and the rates and selectivity of electrocatalytic processes. J. Chem. Phys. 151, 160902 (2019).

    Article  PubMed  Google Scholar 

  27. Kim, Y., Baricuatro, J. H., Javier, A., Gregoire, J. M. & Soriaga, M. P. The evolution of the polycrystalline copper surface, first to Cu(111) and then to Cu(100), at a fixed CO2RR potential: a study by operando EC-STM. Langmuir 30, 15053–15056 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Mähler, J. & Persson, I. A study of the hydration of the alkali metal ions in aqueous solution. Inorg. Chem. 51, 425–438 (2012).

    Article  PubMed  Google Scholar 

  29. Yang, X. et al. Cation-induced interfacial hydrophobic microenvironment promotes the C–C coupling in electrochemical CO2 reduction. J. Am. Chem. Soc. 146, 5532–5542 (2024).

    Article  CAS  PubMed  Google Scholar 

  30. Barth, J. V. Transport of adsorbates at metal surfaces: from thermal migration to hot precursors. Surf. Sci. Rep. 40, 75–149 (2000).

    Article  CAS  Google Scholar 

  31. Nilekar, A. U., Greeley, J. & Mavrikakis, M. A simple rule of thumb for diffusion on transition-metal surfaces. Angew. Chem. Int. Ed. 45, 7046–7049 (2006).

    Article  CAS  Google Scholar 

  32. Yildirim, H., Sankaranarayanan, S. K. R. S. & Greeley, J. P. Periodic trends in adsorption and activation energies for heterometallic diffusion on (100) transition metal surfaces. J. Phys. Chem. C. 116, 22469–22475 (2012).

    Article  CAS  Google Scholar 

  33. Spitzer, A., Ritz, A., & Lüth, H. The adsorption of H2O on Cu(100) surfaces. Surf. Sci. 152/153, 543–549 (1985).

    Article  Google Scholar 

  34. Schiros, T. et al. Structure of water adsorbed on the open Cu(110) surface: H-up, H-down, or both? Chem. Phys. Lett. 429, 415–419 (2006).

    Article  CAS  Google Scholar 

  35. Lu, X., Shinagawa, T. & Takanabe, K. Product distribution control guided by a microkinetic analysis for CO reduction at high-flux electrocatalysis using gas-diffusion Cu electrodes. ACS Catal. 13, 1791–1803 (2023).

    Article  CAS  Google Scholar 

  36. Chang, X. et al. C–C coupling is unlikely to be the rate-determining step in the formation of C2+ products in the copper-catalyzed electrochemical reduction of CO. Angew. Chem. Int. Ed. 61, e202111167 (2022).

    Article  CAS  Google Scholar 

  37. Xu, Y., Yang, H., Chang, X. & Xu, B. Introduction to electrocatalytic kinetics. Acta Phys. Chim. Sin. 39, 2210025 (2023).

    Google Scholar 

  38. Koper, M. T. M. Theory and kinetic modeling of electrochemical cation‑coupled electron transfer reactions. J. Solid State Electrochem. 28, 1601–1606 (2024).

    Article  CAS  Google Scholar 

  39. Bligaard, T. et al. The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 224, 206–217 (2004).

    Article  CAS  Google Scholar 

  40. Gao, W., Xu, Y., Fu, L., Chang, X. & Xu, B. Experimental evidence of distinct sites for CO2-to-CO and CO conversion on Cu in the electrochemical CO2 reduction reaction. Nat. Catal. 6, 885–894 (2023).

    Article  CAS  Google Scholar 

  41. Mortensen, J. J., Hansen, L. B. & Jacobsen, K. W. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 71, 035109 (2005).

    Article  Google Scholar 

  42. Enkovaara, J. et al. Real-space grid implementation of the projector augmented wave method. J. Phys. Condens. Matter 22, 253202 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Larsen, A. H. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Article  Google Scholar 

  44. Larsen, A. H. et al. Localized atomic basis set in the projector augmented wave method. Phys. Rev. B 80, 195112 (2009).

    Article  Google Scholar 

  45. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  46. Lee, K. et al. Higher-accuracy van der Waals density functional. Phys. Rev. B 82, 081101(R) (2010).

    Article  Google Scholar 

  47. Gonzalez, F. J. et al. Assessing the dynamics of CO adsorption on Cu(110) using the vdW-DF2 functional and artificial neural networks. J. Chem. Phys. 159, 224709 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Kastlunger, G., Lindgren, P. & Peterson, A. A. Controlled-potential simulation of elementary electrochemical reactions: proton discharge on metal surfaces. J. Phys. Chem. C. 122, 12771–12781 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Beijing Natural Science Foundation Key Research Program (grant no. Z240026) and the Beijing National Laboratory for Molecular Sciences. We acknowledge the support of the National Natural Science Foundation of China (22122304 (H.X.) and 22303038 (Z.X.)). We are grateful to the Center for Computational Science and Engineering at SUSTech and the CHEM High Performance Supercomputer Cluster (CHEM HPC) at the Department of Chemistry at SUSTech for providing computational resources.

Author information

Authors and Affiliations

Authors

Contributions

Y.X. and B.X. conceived the idea and designed the experiments. Y.X. conducted the electrochemical tests, SEIRAS experiments and statistical thermodynamic analysis. Z.X. and H.X. performed the AIMD simulations. W.G. conducted parts of the electrochemical tests. Y.X., Z.X., H.X. and B.X. analysed the data and co-wrote the paper, with input from all of the other authors.

Corresponding authors

Correspondence to Hai Xiao or Bingjun Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Chang Hyuck Choi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19, Table 1, Notes 1–6 and References 1–22.

Supplementary Data 1

Initial and final structures in the AIMD simulations.

Supplementary Data 2

Python script to run the AIMD simulations.

Source data

Source Data Fig. 1

Enthalpy and entropy of CO adsorption determined by SEIRAS.

Source Data Fig. 2

AIMD simulations of CO adsorption on Cu(100) with Li+ and Cs+.

Source Data Fig. 3

Correlation between the relative enthalpy and entropy of CO adsorption on Cu.

Source Data Fig. 4

Electrochemical activation parameters in MOH.

Source Data Fig. 6

Influence of cation concentration on the elementary steps of CORR.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Xia, Z., Gao, W. et al. Cation effect on the elementary steps of the electrochemical CO reduction reaction on Cu. Nat Catal 7, 1120–1129 (2024). https://doi.org/10.1038/s41929-024-01227-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-024-01227-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing