Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-purity carbon monoxide production via photothermal formic acid decomposition over fluorite ZrO2

Abstract

High-purity carbon monoxide (CO), crucial for various high-tech industries, requires complex purification and further energy input. Here we show that pure fluorite ZrO2 can produce clean CO without purification by driving formic acid dehydration and completely shutting off the formic acid dehydrogenation pathway. An explosion method is developed for synthesizing pristine fluorite ZrO2 nanosheets that achieve a pure CO production rate of 55 mmol g−1 h−1 at 250 °C. Integrated with a homemade photothermal reactor, the fluorite ZrO2 nanosheets show a pure CO productivity of 83 mmol g−1 h−1 under 0.5 sun irradiation and a photochemical energy conversion efficiency of 12.3%. Moreover, this system generates over 1,538 l m−2 of pure CO per day under outdoor sunlight irradiation. This work charts a promising course for purification-free pure CO generation without secondary energy input.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Theoretical simulation of formic acid decomposition.
Fig. 2: The synthesis and characterization of pure fluorite ZrO2.
Fig. 3: Thermocatalytic formic acid decomposition performances of catalysts.
Fig. 4: Characterization of intermediates in formic acid decomposition.
Fig. 5: The photothermal formic acid dehydration.

Similar content being viewed by others

Data availability

Source data are available via figshare at https://doi.org/10.6084/m9.figshare.27300834.v1 (ref. 51) or from the corresponding author upon reasonable request.

References

  1. Wittig, C., Hassler, J. C. & Coleman, P. D. Constant-wave laser oscillation in a carbon monoxide chemical laser. Nature 226, 845–846 (1970).

    Article  CAS  PubMed  Google Scholar 

  2. Harrison, P. G. & Willett, M. J. The mechanism of operation of tin(iv) oxide carbon monoxide sensors. Nature 332, 337–339 (1988).

    Article  Google Scholar 

  3. D’Angelo, M. et al. In-situ formation of SiC nanocrystals by high temperature annealing of SiO2/Si under CO: a photoemission study. Surf. Sci. 606, 697–701 (2012).

    Article  Google Scholar 

  4. Ma, X. et al. Carbon monoxide separation: past, present and future. Chem. Soc. Rev. 52, 3741–3777 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Karatok, M. et al. Achieving ultra-high selectivity to hydrogen production from formic acid on Pd-Ag alloys. J. Am. Chem. Soc. 145, 5114–5124 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Matsumoto, N., Watanabe, T. & Kato, K. Impurity analyses of high-purity carbon monoxide gas using micro gas chromatography for development as a certified reference material. J. Chromatogr. A 1282, 190–193 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Xu, W., Lindbråthen, A., Janakiram, S., Ansaloni, L. & Deng, L. Enhanced CO2/H2 separation by GO and PVA-GO embedded PVAm nanocomposite membranes. J. Membr. Sci. 671, 121397 (2023).

    Article  CAS  Google Scholar 

  8. Baker, R. W. & Low, B. T. Gas separation membrane materials: a perspective. Macromolecules 47, 6999–7013 (2014).

    Article  CAS  Google Scholar 

  9. Kasuya, F. & Tsuji, T. High purity CO gas separation by pressure swing adsorption. Gas. Sep. Purif. 5, 242–246 (1991).

    Article  CAS  Google Scholar 

  10. Dutta, N. & Patil, G. Developments in CO separation. Gas. Sep. Purif. 9, 277–283 (1995).

    Article  CAS  Google Scholar 

  11. Onishi, N., Laurenczy, G., Beller, M. & Himeda, Y. Recent progress for reversible homogeneous catalytic hydrogen storage in formic acid and in methanol. Coord. Chem. Rev. 373, 317–332 (2018).

    Article  CAS  Google Scholar 

  12. Kwon, S., Lin, T. C. & Iglesia, E. Elementary steps and site requirements in formic acid dehydration reactions on anatase and rutile TiO2 surfaces. J. Catal. 383, 60–76 (2020).

    Article  CAS  Google Scholar 

  13. Qi, Y. et al. Photoinduced defect engineering: enhanced photothermal catalytic performance of 2D black In2O3−x nanosheets with bifunctional oxygen vacancies. Adv. Mater. 32, 1903915 (2020).

    Article  CAS  Google Scholar 

  14. Tedsree, K. et al. Hydrogen production from formic acid decomposition at room temperature using a Ag–Pd core–shell nanocatalyst. Nat. Nanotechnol. 6, 302–307 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Grasemann, M. & Laurenczy, G. Formic acid as a hydrogen source-recent developments and future trends. Energy Environ. Sci. 5, 8171–8181 (2012).

    Article  CAS  Google Scholar 

  16. Malinowski, M., Malinowska, K. & Zatorski, L. W. A. The catalytic decomposition of formic acid into carbon monoxide. Bull. Soc. Chim. Belg. 92, 225–227 (1983).

    Article  CAS  Google Scholar 

  17. Yu, Z. et al. Formic acid as a Bio-CO carrier: selective dehydration with γ-Mo2N catalysts at low temperatures. ACS Sustain. Chem. Eng. 8, 13956–13963 (2020).

    Article  CAS  Google Scholar 

  18. Popova, G. Y., Andrushkevich, T. V., Chesalov, Y. A. & Stoyanov, E. S. In situ FTIR study of the adsorption of formaldehyde, formic acid, and methyl formiate at the surface of TiO2 (anatase). Kinet. Catal. 41, 805–811 (2000).

    Article  CAS  Google Scholar 

  19. Popova, G. Y., Zakharov, I. & Andrushkevich, T. Mechanism of formic acid decomposition on P-Mo heteropolyacid. React. Kinet. Catal. Lett. 66, 251–256 (1999).

    Article  CAS  Google Scholar 

  20. Dziembaj, R., Molenda, M. & Chmielarz, L. Synthesis and specific properties of the ceria and ceria-zirconia nanocrystals and their aggregates showing outstanding catalytic activity in redox reactions—a review. Catalysts 13, 1165 (2023).

    Article  CAS  Google Scholar 

  21. Yang, H. et al. One-step synthesis of highly active and stable Ni-ZrO2 catalysts for the conversion of methyl laurate to alkanes. J. Catal. 413, 297–310 (2022).

    Article  CAS  Google Scholar 

  22. Lee, H. J., Kang, D. C., Pyen, S. H., Shin, M. & Shin, C. H. Production of H2-free CO by decomposition of formic acid over ZrO2 catalysts. Appl. Catal. A 531, 13–20 (2017).

    Article  CAS  Google Scholar 

  23. Tazuke, S. & Kitamura, N. Photofixation of carbon dioxide to formic acid in vitro using water as hydrogen source. Nature 275, 301–302 (1978).

    Article  CAS  Google Scholar 

  24. Li, Y. et al. Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation. Nat. Commun. 10, 2359 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gray, J. T. et al. Unravelling the reaction mechanism of gas-phase formic acid decomposition on highly dispersed Mo2C nanoparticles supported on graphene flakes. Appl. Catal. B 264, 118478 (2020).

    Article  Google Scholar 

  26. Fisher, G., Seacrist, M. R. & Standley, R. W. Silicon crystal growth and wafer technologies. P. IEEE 100, 1454–1474 (2012).

    Article  CAS  Google Scholar 

  27. Anthony, J. E. The larger acenes: versatile organic semiconductors. Angew. Chem. Int. Ed. 47, 452–483 (2008).

    Article  CAS  Google Scholar 

  28. Li, Y. et al. Cu-based high-entropy two-dimensional oxide as stable and active photothermal catalyst. Nat. Commun. 14, 3171 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, Y. et al. General heterostructure strategy of photothermal materials for scalable solar-heating hydrogen production without the consumption of artificial energy. Nat. Commun. 13, 776 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ricca, C., Ringuedé, A., Cassir, M., Adamo, C. & Labat, F. A comprehensive DFT investigation of bulk and low-index surfaces of ZrO2 polymorphs. J. Comput. Chem. 36, 9–21 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Barnard, A. S., Yeredla, R. R. & Xu, H. Modelling the effect of particle shape on the phase stability of ZrO2 nanoparticles. Nanotechnology 17, 3039 (2006).

    Article  CAS  Google Scholar 

  32. Song, X. et al. Thermophysical and mechanical properties of cubic, tetragonal and monoclinic ZrO2. J. Mater. Res. Technol. 23, 648–655 (2023).

    Article  CAS  Google Scholar 

  33. Ohtaka, O. et al. Phase relations and equations of state of ZrO2 under high temperature and high pressure. Phys. Rev. B 63, 174108 (2001).

    Article  Google Scholar 

  34. Motomura, H., Tamao, D., Nambu, K., Masuda, H. & Yoshida, H. Athermal effect of flash event on high-temperature plastic deformation in Y2O3-stabilized tetragonal ZrO2 polycrystal. J. Eur. Ceram. Soc. 42, 5045–5052 (2022).

    Article  CAS  Google Scholar 

  35. Jaipal, M. & Chatterjee, A. Relative occurrence of oxygen-vacancy pairs in yttrium-containing environments of Y2O3-doped ZrO2 can be crucial to ionic conductivity. J. Phys. Chem. C 121, 14534–14543 (2017).

    Article  CAS  Google Scholar 

  36. Biçer, H. et al. Multicycle flash sintering of cubic Y2O3-stabilized ZrO2: an in situ energy dispersive synchrotron X-ray diffraction study with high temporal resolution. Mater. Today Commun. 33, 104272 (2022).

    Article  Google Scholar 

  37. Bankar, B. D., Naikwadi, D. R. & Biradar, A. V. Hydrogenation of CO2 to formic acid over efficient heterogeneous ruthenium oxide supported on cubic phase zirconium oxide catalyst. Appl. Surf. Sci. 631, 157556 (2023).

    Article  CAS  Google Scholar 

  38. Zhong, Y., Li, Z. & Wang, X. Seed-crystal-induced directional solidification toward Al2O3/(Y0.2Er0.2Yb0.2Ho0.2Lu0.2)3Al5O12/ZrO2 ternary eutectic ceramics. Acta Mater. 22, 119369 (2023).

    Google Scholar 

  39. Chen, Y. X., Heinen, M., Jusys, Z. & Behm, R. J. Kinetics and mechanism of the electrooxidation of formic acid-spectroelectrochemical studies in a flow cell. Angew. Chem. Int. Ed. 45, 981–985 (2006).

    Article  CAS  Google Scholar 

  40. Huo, B., Li, B., Chen, C. & Zhang, Y. Surface etching and early age hydration mechanisms of steel slag powder with formic acid. Constr. Build. Mater. 280, 122500 (2021).

    Article  CAS  Google Scholar 

  41. Ning, S. et al. Co0–Coδ+ interface double-site-mediated C–C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem. Int. Ed. 135, e202302253 (2023).

    Article  Google Scholar 

  42. Belhadj, H., Hakki, A., Robertson, P. K. J. & Bahnemann, D. W. In situ ATR-FTIR study of H2O and D2O adsorption on TiO2 under UV irradiation. Phys. Chem. Chem. Phys. 17, 22940 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Li, Y. et al. Low temperature thermal and solar heating carbon-free hydrogen production from ammonia using nickel single atom catalysts. Adv. Energy Mater. 12, 2202459 (2022).

    Article  CAS  Google Scholar 

  44. Lv, C. et al. Nanostructured materials for photothermal carbon dioxide hydrogenation: regulating solar utilization and catalytic performance. ACS Nano 17, 1725–1738 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Li, Y. et al. A Ni–O–Ag photothermal catalyst enables 103-m2 artificial photosynthesis with 17% solar-to-chemical energy conversion efficiency. Sci. Adv. 10, eadn5098 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gazsi, A., Bánsági, T. & Solymosi, F. Decomposition and reforming of formic acid on supported Au catalysts: production of CO-free H2. J. Phys. Chem. C 115, 15459–15466 (2011).

    Article  CAS  Google Scholar 

  47. Sadovskaya, E. M., Chesalov, Y. A., Goncharov, V. B., Sobolev, V. I. & Andrushkevich, T. V. Formic acid decomposition over V-Ti oxide catalyst: mechanism and kinetics. Mol. Catal. 430, 52–64 (2017).

    Google Scholar 

  48. Ivanez, J., Garcia-Munoz, P., Ruppert, A. M. & Keller, N. UV—a light-assisted gas-phase formic acid decomposition on photo-thermo Ru/TiO2 catalyst. Catal. Today 380, 138–146 (2021).

    Article  CAS  Google Scholar 

  49. Bulushev, D. A., Beloshapkin, S. & Ross, J. R. H. Hydrogen from formic acid decomposition over Pd and Au catalysts. Catal. Today 154, 7–12 (2010).

    Article  CAS  Google Scholar 

  50. Cao, J. et al. Hydrogen production from formic acid over morphology-controllable molybdenum carbide catalysts. J. Alloys Compd. 735, 1463–1471 (2018).

    Article  CAS  Google Scholar 

  51. Li, Y. et al. High-purity carbon monoxide production via photothermal formic acid decomposition over fluorite ZrO2. figshare https://doi.org/10.6084/m9.figshare.27300834.v1 (2024).

Download references

Acknowledgements

We thank Qingbo Meng (Institute of Physics, Chinese Academy of Sciences) for the guidance on the formic acid dehydration. We are grateful for the TEM technical support provided by the Microanalysis Center, College of Physics Science and Technology, Hebei University. We thank Jianmin Lv (Dalian Institute of Chemical Physics, Chinese Academy of Sciences), Wei Zhou (Tianjin University) and Ruqian Lian (Hebei University) for assistance with the theoretical calculations. This work is supported by the National Natural Science Foundation of China (52371220, Y.Li; U23A20139, J.Y.), Natural Science Foundation of Hebei Province (B2023204034, Y.Li; B2023201107, D.Y.; B2022201090, Y.Li; B2021201074, Y.Li; B2024201096, J.Y.; 2023HBQZYCXY001, J.Y.), Hebei Education Department (QN2022059, D.Y.), Interdisciplinary Research Program of Natural Science of Hebei University (521100311, J.Y.; DXK202109, Y.Li), the Advanced Talents Incubation Program of Hebei University (grant no. 050001-521100223213, J.Y.) and the Scientific Research Foundation of Hebei Agricultural University (YJ201939, D.Y.).

Author information

Authors and Affiliations

Authors

Contributions

Y. Li and J.Y. conceived the project and contributed to the design of the experiments and analysis of the data. Y. Luo, B.L. and D.Y. performed the preparation and characterizations of the catalysts. D.Y., H.W., Q.W. and J.W. performed the photothermal reactors’ characterizations. X.S. and Y.W. conducted the SEM and TEM examinations. Y. Li and J.Y. wrote the paper. All the authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Yaguang Li, Yanhong Luo or Jinhua Ye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Hermenegildo Garcia and Andrew Logsdail for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–28 and References.

Supplementary Video 1

The fast-burning video of the mixture of zirconium salt and explosive.

Supplementary Video 2

The water droplets produced from thermal formic acid decomposition over F-ZrO2.

Supplementary Video 3

The working video of photothermal formic acid dehydration.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, B., Yuan, D. et al. High-purity carbon monoxide production via photothermal formic acid decomposition over fluorite ZrO2. Nat Catal 7, 1350–1358 (2024). https://doi.org/10.1038/s41929-024-01249-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-024-01249-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing