Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Merging photoredox with metalloenzymatic catalysis for enantioselective decarboxylative C(sp3)‒N3 and C(sp3)‒SCN bond formation

Abstract

The scope of nature’s catalytic abilities has been expanded by recent advancements in biocatalysis to include synthetic transformations with no biological equivalent. However, these newly introduced catalytic functions represent only a small fraction of reactions utilized in synthetic catalysis. Here we present a biocatalytic platform that combines photoredox and metalloenzymatic catalysis for enantioselective radical transformations. Under green light irradiation, the eosin Y photocatalyst enables 4-hydroxyphenylpyruvate dioxygenases to catalyse enantioselective decarboxylative azidation and thiocyanation of N-hydroxyphthalimide esters. The final optimized variant obtained through directed evolution can afford diverse chiral organic azide and thiocyanate compounds with up to 77% yield, 385 total turnovers and 94% enantiomeric excess. Mechanistic studies show that the eosin Y catalyst mediates the generation of both C(sp3) radical and Fe(III)‒N3/Fe(III)‒NCS intermediate, leading to efficient enantioselective C‒N3 and C‒SCN bond formation in the enzyme active site. These findings establish an adaptable biocatalytic platform for introducing abiological metallophotoredox catalysis into biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The design of a photobiocatalytic platform for decarboxylative functionalization.
Fig. 2: Initial activity discovery and directed evolution.
Fig. 3: Substrate scope of photobiocatalytic decarboxylative azidation and thiocyanation.
Fig. 4: Mechanistic studies.

Similar content being viewed by others

Data availability

All data required to assess the conclusions of this study are included in the Article and its Supplementary Information or can be obtained from the authors upon reasonable request.

References

  1. Lu, Y., Yeung, N., Sieracki, N. & Marshall, N. M. Design of functional metalloproteins. Nature 460, 855–862 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bertini, G. et al. Biological Inorganic Chemistry: Structure and Reactivity (University Science Books, 2007).

  3. Schwizer, F. et al. Artificial metalloenzymes: reaction scope and optimization strategies. Chem. Rev. 118, 142–231 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Chen, K. & Arnold, F. H. Engineering new catalytic activities in enzymes. Nat. Catal. 3, 203–213 (2020).

    Article  CAS  Google Scholar 

  5. Miller, D. C., Athavale, S. V. & Arnold, F. H. Combining chemistry and protein engineering for new-to-nature biocatalysis. Nat. Synth. 1, 18–23 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang, Y. & Arnold, F. H. Navigating the unnatural reaction space: directed evolution of heme proteins for selective carbene and nitrene transfer. Acc. Chem. Res. 54, 1209–1225 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ren, X. & Fasan, R. Engineered and artificial metalloenzymes for selective C–H functionalization. Curr. Opin. Green. Sustain. Chem. 31, 100494 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mondal, D., Snodgrass, H. M., Gomez, C. A. & Lewis, J. C. Non-native site-selective enzyme catalysis. Chem. Rev. 123, 10381–10431 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Emmanuel, M. A. et al. Photobiocatalytic strategies for organic synthesis. Chem. Rev. 123, 5459–5520 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chan, A. Y. et al. Metallaphotoredox: the merger of photoredox and transition metal catalysis. Chem. Rev. 122, 1485–1542 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Huang, X. & Groves, J. T. Oxygen activation and radical transformations in heme proteins and metalloporphyrins. Chem. Rev. 118, 2491–2553 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Broderick, J. B., Duffus, B. R., Duschene, K. S. & Shepard, E. M. Radical S-adenosylmethionine enzymes. Chem. Rev. 114, 4229–4317 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Krebs, C., Galonić Fujimori, D., Walsh, C. T. & Bollinger, J. M. Jr. Non-heme Fe(IV)–oxo intermediates. Acc. Chem. Res. 40, 484–492 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Zhou, Q., Chin, M., Fu, Y., Liu, P. & Yang, Y. Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450. Science 374, 1612–1616 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rui, J. et al. Directed evolution of nonheme iron enzymes to access abiological radical-relay C(sp3)-H azidation. Science 376, 869–874 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fu, W. et al. Enzyme-controlled stereoselective radical cyclization to arenes enabled by metalloredox biocatalysis. Nat. Catal. 6, 628–636 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao, Q. et al. Engineering non-haem iron enzymes for enantioselective C(sp3)–F bond formation via radical fluorine transfer. Nat. Synth. 3, 958–966 (2024).

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, L.-P. et al. Biocatalytic enantioselective C(sp3)–H fluorination enabled by directed evolution of non-haem iron enzymes. Nat. Synth. https://doi.org/10.1038/s44160-024-00536-2 (2024).

  19. Lee, J. & Song, W. J. Photocatalytic C-O coupling enzymes that operate via intramolecular electron transfer. J. Am. Chem. Soc. 145, 5211–5221 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Hu, W.-Y. et al. Light-driven oxidative demethylation reaction catalyzed by a Rieske-type non-heme iron enzyme Stc2. ACS Catal. 12, 14559–14570 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fu, Y. et al. Biocatalytic cross-coupling of aryl halides with a genetically engineered photosensitizer artificial dehalogenase. J. Am. Chem. Soc. 143, 617–622 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Harrison, W., Huang, X. & Zhao, H. Photobiocatalysis for abiological transformations. Acc. Chem. Res. 55, 1087–1096 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Fu, H. & Hyster, T. K. From ground-state to excited-state activation modes: flavin-dependent ‘ene’-reductases catalyzed non-natural radical reactions. Acc. Chem. Res. 57, 1446–1457 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ouyang, Y., Page, C. G., Bilodeau, C. & Hyster, T. K. Synergistic photoenzymatic catalysis enables synthesis of a-tertiary amino acids using threonine aldolases. J. Am. Chem. Soc. 146, 13754–13759 (2024).

    Article  CAS  PubMed  Google Scholar 

  25. Cheng, L. et al. Stereoselective amino acid synthesis by synergistic photoredox–pyridoxal radical biocatalysis. Science 381, 444–451 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, T.-C. et al. Stereoselective amino acid synthesis by photobiocatalytic oxidative coupling. Nature 629, 98–104 (2024).

    Article  CAS  PubMed  Google Scholar 

  27. Xu, Y. et al. A light-driven enzymatic enantioselective radical acylation. Nature 625, 74–78 (2024).

    Article  CAS  PubMed  Google Scholar 

  28. Trimble, J. S. et al. A designed photoenzyme for enantioselective [2+2] cycloadditions. Nature 611, 709–714 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Sun, N. et al. Enantioselective [2+2]-cycloadditions with triplet photoenzymes. Nature 611, 715–720 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, H., Liu, Y. A. & Liao, X. Recent progress in radical decarboxylative functionalizations enabled by transition-metal (Ni, Cu, Fe, Co or Cr) catalysis. Synthesis 53, 1–29 (2020).

    Google Scholar 

  31. Sivaguru, P., Ning, Y. & Bi, X. New strategies for the synthesis of aliphatic azides. Chem. Rev. 121, 4253–4307 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Schwarz, J. & König, B. Decarboxylative reactions with and without light—a comparison. Green. Chem. 20, 323–361 (2018).

    Article  CAS  Google Scholar 

  33. Kao, S.-C. et al. Photochemical iron-catalyzed decarboxylative azidation via the merger of ligand-to-metal charge transfer and radical ligand transfer catalysis. Chem. Catal. 3, 100603 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhu, Y. et al. Silver-catalyzed decarboxylative azidation of aliphatic carboxylic acids. Org. Lett. 17, 4702–4705 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, C., Wang, X., Li, Z., Cui, L. & Li, C. Silver-catalyzed decarboxylative radical azidation of aliphatic carboxylic acids in aqueous solution. J. Am. Chem. Soc. 137, 9820–9823 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Masterson, D. S. & Porter, N. A. Diastereoselective free radical halogenation, azidation, and rearrangement of β-silyl barton esters. Org. Lett. 4, 4253–4256 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Wu, J., Shu, C., Li, Z., Noble, A. & Aggarwal, V. K. Photoredox-catalyzed decarboxylative bromination, chlorination and thiocyanation using inorganic salts. Angew. Chem. Int. Ed. 62, e202309684 (2023).

    Article  CAS  Google Scholar 

  38. Marcote, D. C. et al. Photoinduced decarboxylative azidation of cyclic amino acids. Org. Biomol. Chem. 17, 1839–1842 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, Y., Li, L. & Fu, N. Electrophotochemical decarboxylative azidation of aliphatic carboxylic acids. ACS Catal. 12, 10661–10667 (2022).

    Article  CAS  Google Scholar 

  40. Nyfeler, E. & Renaud, P. Decarboxylative radical azidation using MPDOC and MMDOC esters. Org. Lett. 10, 985–988 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, K., Li, Y., Li, X., Li, D. & Bao, H. Iron-catalyzed asymmetric decarboxylative azidation. Org. Lett. 23, 8847–8851 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Bhat, V., Welin, E. R., Guo, X. & Stoltz, B. M. Advances in stereoconvergent catalysis from 2005 to 2015: transition-metal-mediated stereoablative reactions, dynamic kinetic resolutions, and dynamic kinetic asymmetric transformations. Chem. Rev. 117, 4528–4561 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Winkler, J. R. & Gray, H. B. Electron transfer in ruthenium-modified proteins. Chem. Rev. 92, 369–379 (1992).

    Article  CAS  Google Scholar 

  44. Waheed, A. A., Rao, K. S. & Gupta, P. D. Mechanism of dye binding in the protein assay using eosin dyes. Anal. Biochem. 287, 73–79 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Biegasiewicz, K. F., Cooper, S. J., Emmanuel, M. A., Miller, D. C. & Hyster, T. K. Catalytic promiscuity enabled by photoredox catalysis in nicotinamide-dependent oxidoreductases. Nat. Chem. 10, 770–775 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Gray, H. B. & Winkler, J. R. Long-range electron transfer. Proc. Natl Acad. Sci. USA 102, 3534–3539 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hari, D. P. & König, B. Synthetic applications of eosin Y in photoredox catalysis. Chem. Commun. 50, 6688–6699 (2014).

    Article  CAS  Google Scholar 

  48. Hagedoorn, P.-L. et al. The effect of substrate, dihydrobiopterin, and dopamine on the EPR spectroscopic properties and the midpoint potential of the catalytic iron in recombinant human phenylalanine hydroxylase. J. Biol. Chem. 276, 22850–22856 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Frantom, P. A., Seravalli, J., Ragsdale, S. W. & Fitzpatrick, P. F. Reduction and oxidation of the active site iron in tyrosine hydroxylase: kinetics and specificity. Biochemistry 45, 2372–2379 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Barrette, W. C. Jr., Sawyer, D. T., Fee, J. A. & Asada, K. Potentiometric titrations and oxidation-reduction potentials of several iron superoxide dismutases. Biochemistry 22, 624–627 (1983).

    Article  CAS  PubMed  Google Scholar 

  51. Schindler, C. E. M., Hollenbach, E., Mietzner, T., Schleifer, K.-J. & Zacharias, M. Free energy calculations elucidate substrate binding, gating mechanism, and tolerance-promoting mutations in herbicide target 4-hydroxyphenylpyruvate dioxygenase. Prot. Sci. 28, 1048–1058 (2019).

    Article  CAS  Google Scholar 

  52. Fritze, I. M. et al. The crystal structures of Zea mays and Arabidopsis 4-hydroxyphenylpyruvate dioxygenase. Plant Physiol. 134, 1388–1400 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brownlee, J. M., Johnson-Winters, K., Harrison, D. H. T. & Moran, G. R. Structure of the ferrous form of (4-hydroxyphenyl)pyruvate dioxygenase from Streptomyces avermitilis in complex with the therapeutic herbicide, NTBC. Biochemistry 43, 6370–6377 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Blasiak, L. C. & Drennan, C. L. Structural perspective on enzymatic halogenation. Acc. Chem. Res. 42, 147–155 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Kille, S. et al. Reducing codon redundancy and screening effort of combinatorial protein libraries created by saturation mutagenesis. ACS Synth. Biol. 2, 83–92 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Tomohiko, F., Nobuki, K., Izumi, I., Yoshiyuki, M. & Minoru, U. Synthesis of Staudinger-type molecular probe for catch-and-release purification of the binding protein for potassium isolespedezate, a leaf-closing substance of leguminous plant. Chem. Lett. 37, 52–53 (2008).

    Article  Google Scholar 

  58. Xu, J. et al. Synthesis and reactivity of 6,7-dihydrogeranylazides: reagents for primary azide incorporation into peptides and subsequent Staudinger ligation. Chem. Biol. Drug Des. 68, 85–96 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Johns Hopkins University (to X.H.) and by National Institutes of Health (NIH) GM R01-125924 (to Y.G.). This work was also supported by the Generalitat de Catalunya AGAUR 2021SGR00623 project (to M.G.-B.), the Spanish MICINN (Ministerio de Ciencia e Innovación) PID2022-141676NB-I00 and TED2021-130173B-C42 projects, RYC 2020-028628-I grant (to M.G.-B) and the Spanish MIU (Ministerio de Universidades) pre-doctoral fellowship FPU18/02380 (to J.S.). Part of the computational resources used were funded by the European Research Council (ERC) under the European Union’s ERC-StG-2015 (grant agreement no. 679001), as well as by FEDER (Fondo Europeo de Desarrollo Regional) and Spanish MINECO (Ministerio de Economía, Comercio y Empresa) through projects CTQ2014-54306-P, CTQ2015-69363-P and MPCUdG2016/096.

Author information

Authors and Affiliations

Authors

Contributions

X.H. and J.R. conceived the project and designed the experiments. J.R. performed initial screening and directed evolution experiments and results analysis. X.M. and J.R. performed substrate scope study. Y.G. and J.C.P. conducted the electron paramagnetic resonance studies. M.G.-B. directed the computational modelling studies. J.S. performed density functional theory calculations and MD simulation studies under the guidance of M.G.-B. X.H. and J.R. wrote the manuscript with input from all other authors, M.G.-B. wrote the computational section.

Corresponding authors

Correspondence to Yisong Guo, Marc Garcia-Borràs or Xiongyi Huang.

Ethics declarations

Competing interests

A provisional patent application covering radical C–N3 and C‒SCN bond formation has been filed through the Johns Hopkins University with X.H. and J.R. as inventors (PCT/US2023/022431). The other authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Qi Wu, Wei Yu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–6, Figs. 1–11 and Notes 1–13.

Reporting Summary

Supplementary Data 1

Coordinates from MD simulations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rui, J., Mu, X., Soler, J. et al. Merging photoredox with metalloenzymatic catalysis for enantioselective decarboxylative C(sp3)‒N3 and C(sp3)‒SCN bond formation. Nat Catal 7, 1394–1403 (2024). https://doi.org/10.1038/s41929-024-01257-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-024-01257-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing