Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Site- and enantioselective allylic and propargylic C–H oxidation enabled by copper-based biomimetic catalysis

Abstract

Methods for direct enantioselective oxidation of C(sp3)–H bonds will revolutionize the preparation of chiral alcohols and their derivatives. Enzymatic catalysis, which uses key metal-oxo species to facilitate efficient hydrogen atom abstraction, has evolved as a highly selective approach for C–H oxidation in biological systems. Despite its effectiveness, reproducing this function and achieving high stereoselectivity in biomimetic catalysts has proven to be a daunting task. Here we present a copper-based biomimetic catalytic system that achieves highly efficient asymmetric sp3 C–H oxidation with C–H substrates as the limiting reagent. A Cu(II)-bound tert-butoxy radical is responsible for the site-selective C–H bond cleavage, which resembles the active site of copper-based enzymes for C–H oxidation. The developed method has been successfully accomplished with good functional group compatibility and exceptionally high site- and enantioselectivity, which is applicable for the late-stage oxidation of bioactive compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Highly selective sp3 C–H oxidation.
Fig. 2: Initial results on the selective sp3 C–H oxidation with C–H substrates as limiting reagents.
Fig. 3: Mechanistic investigations on the reactions in CH3CN and CF3CH2OH.
Fig. 4: Computational analysis.
Fig. 5: Substrate scope on the site- and enantioselective C–H oxidation.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this Article are available from the Cambridge Crystallographic Data Centre with the deposition number CCDC 2391309. All other data supporting the findings of this study are available within the Article and its Supplementary Information, or from the corresponding author upon reasonable request.

References

  1. Santaniello, E., Ferraboschi, P., Grisenti, P. & Manzocchi, A. The biocatalytic approach to the preparation of enantiomerically pure chiral building blocks. Chem. Rev. 92, 1071–1140 (1992).

    Article  CAS  Google Scholar 

  2. Noyori, R. & Ohkuma, T. Asymmetric catalysis by architectural and functional molecular engineering: practical chemo- and stereoselective hydrogenation of ketones. Angew. Chem. Int. Ed. 40, 40–73 (2001).

    Article  CAS  Google Scholar 

  3. Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C–H bond activation. Nature 417, 507–514 (2002).

    Article  PubMed  CAS  Google Scholar 

  4. Chakrabarty, S., Wang, Y., Perkins, J. C. & Narayan, A. R. H. Scalable biocatalytic C–H oxyfunctionalization reactions. Chem. Soc. Rev. 49, 8137–8155 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Golden, D. L., Suh, S.-E. & Stahl, S. S. Radical C(sp3)–H functionalization and cross-coupling reactions. Nat. Rev. Chem. 6, 405–427 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. White, M. C. & Zhao, J. Aliphatic C–H oxidations for late-stage functionalization. J. Am. Chem. Soc. 140, 13988–14009 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Che, C.-M., Lo, V. K.-Y., Zhou, C.-Y. & Huang, J.-S. Selective functionalisation of saturated C–H bonds with metalloporphyrin catalysts. Chem. Soc. Rev. 40, 1950–1975 (2011).

    Article  PubMed  CAS  Google Scholar 

  8. Milan, M., Salamone, M., Costas, M. & Bietti, M. The quest for selectivity in hydrogen atom transfer based aliphatic C–H bond oxygenation. Acc. Chem. Res. 51, 1984–1995 (2018).

    Article  PubMed  CAS  Google Scholar 

  9. Chen, M. S. & White, M. C. Combined effects on selectivity in Fe-catalyzed methylene oxidation. Science 327, 566–571 (2010).

    Article  PubMed  CAS  Google Scholar 

  10. Horn, E. J. et al. Scalable and sustainable electrochemical allylic C–H oxidation. Nature 533, 77–81 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Saint-Denis, G., Zhu, R.-Y., Chen, G., Wu, Q.-F. & Yu, J.-Q. Enantioselective C(sp3)‒H bond activation by chiral transition metal catalysts. Science 359, eaao4798 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Covell, D. J. & White, M. C. A chiral Lewis acid strategy for enantioselective allylic C–H oxidation. Angew. Chem. Int. Ed. 47, 6448–6451 (2008).

    Article  CAS  Google Scholar 

  13. Wang, P.-S. et al. Asymmetric allylic C–H oxidation for the synthesis of chromans. J. Am. Chem. Soc. 137, 12732–12735 (2015).

    Article  PubMed  CAS  Google Scholar 

  14. Cianfanelli, M. et al. Enantioselective C–H lactonization of unactivated methylenes directed by carboxylic acids. J. Am. Chem. Soc. 142, 1584–1593 (2020).

    Article  PubMed  CAS  Google Scholar 

  15. Nie, X., Ye, C.-X., Ivlev, S.-I., & Meggers, E. Nitrene-mediated C–H oxygenation: catalytic enantioselective formation of five-membered cyclic organic carbonates. Angew. Chem. Int. Ed. 61, e202211971 (2022).

    Article  CAS  Google Scholar 

  16. Ortiz de Montellano, P. R. Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem. Rev. 110, 932–948 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ciano, L., Davies, G. J., Tolman, W. B. & Walton, P. H. Bracing copper for the catalytic oxidation of C–H bonds. Nat. Catal. 1, 571–577 (2018).

    Article  CAS  Google Scholar 

  18. Wang, V. C. C. et al. Alkane oxidation: methane monooxygenases, related enzymes, and their biomimetics. Chem. Rev. 117, 8574–8621 (2017).

    Article  PubMed  CAS  Google Scholar 

  19. Lieberman, R. L. & Rosenzweig, A. C. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434, 177–182 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. Balasubramanian, R. et al. Oxidation of methane by a biological dicopper centre. Nature 465, 115–119 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Elwell, C. E. et al. Copper–oxygen complexes revisited: structures, spectroscopy, and reactivity. Chem. Rev. 117, 2059–2107 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kharasch, M. S. & Sosnovsky, G. The reactions of t-butyl perbenzoate and olefins—a stereospecific reaction. J. Am. Chem. Soc. 80, 756 (1958).

    Article  CAS  Google Scholar 

  23. Kropf, H., Schröer, R. & Fösing, R. Kharasch-Sosnovsky-Reaktionen von Alkynen und Tetramethylallen. Synthesis 12, 894–896 (1977).

    Article  Google Scholar 

  24. Tran, B. L., Driess, M. & Hartwig, J. F. Copper-catalyzed oxidative dehydrogenative carboxylation of unactivated alkanes to allylic esters via alkenes. J. Am. Chem. Soc. 136, 17292–17301 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Golden, D. L. et al. Benzylic C–H esterification with limiting C–H substrate enabled by photochemical redox buffering of the Cu catalyst. J. Am. Chem. Soc. 145, 9434–9440 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Eames, J. & Watkinson, M. Catalytic allylic oxidation of alkenes using an asymmetric Kharasch-Sosnovsky reaction. Angew. Chem. Int. Ed. 40, 3567–3571 (2001).

    Article  CAS  Google Scholar 

  27. Zhang, B., Zhu, S.-F. & Zhou, Q.-L. Copper-catalyzed enantioselective allylic oxidation of acyclic olefins. Tetrahedron Lett. 54, 2665–2668 (2013).

    Article  CAS  Google Scholar 

  28. Clark, J. S., Tolhurst, K. F., Taylor, M. & Swallow, S. Enantioselective propargylic oxidation. Tetrahedron Lett. 39, 4913–4916 (1998).

    Article  CAS  Google Scholar 

  29. Andrus, M. B. & Lashley, J. C. Copper catalyzed allylic oxidation with peresters. Tetrahedron 58, 845–866 (2002).

    Article  CAS  Google Scholar 

  30. Andrus, M. B. & Zhou, Z. Highly enantioselective copper-bisoxazoline-catalyzed allylic oxidation of cyclic olefins with tert-butyl p-nitroperbenzoate. J. Am. Chem. Soc. 124, 8806–8807 (2002).

    Article  PubMed  CAS  Google Scholar 

  31. Wang, F., Chen, P. & Liu, G. Copper-catalyzed radical relay for asymmetric radical transformations. Acc. Chem. Res. 51, 2036–2046 (2018).

    Article  PubMed  CAS  Google Scholar 

  32. Li, J. et al. Site-specific allylic C–H bond functionalization with a copper-bound N-centred radical. Nature 574, 516–521 (2019).

    Article  PubMed  CAS  Google Scholar 

  33. Hu, H. et al. Copper-catalysed benzylic C–H coupling with alcohols via radical relay enabled by redox buffering. Nat. Catal. 3, 358–367 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Walling, C. & Zavitsas, A. A. The copper-catalyzed reaction of peresters with hydrocarbons. J. Am. Chem. Soc. 85, 2084–2090 (1963).

    Article  CAS  Google Scholar 

  35. Kochi, J. K. & Mains, H. E. Studies on the mechanism of the reaction of peroxides and alkenes with copper salts. J. Org. Chem. 30, 1862–1872 (1965).

    Article  CAS  Google Scholar 

  36. Beckwith, A. L. J. & Zavitsas, A. A. Allylic oxidations by peroxy esters catalyzed by copper salts. The potential for stereoselective syntheses. J. Am. Chem. Soc. 108, 8230–8234 (1986).

    Article  CAS  Google Scholar 

  37. Smith, K., Hupp, C. D., Allen, K. L. & Slough, G. A. Catalytic allylic amination versus allylic oxidation: a mechanistic dichotomy. Organometallics 24, 1747–1755 (2005).

    Article  CAS  Google Scholar 

  38. Quinn, R. K. et al. Site-selective aliphatic C–H chlorination using N-chloroamides enables a synthesis of chlorolissoclimide. J. Am. Chem. Soc. 138, 696–702 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Janzen, E. G., Coulter, G. A., Oehler, U. M. & Bergsma, J. P. Solvent effects on the nitrogen and β-hydrogen hyperfine splitting constants of aminoxyl radicals obtained in spin trapping experiments. Can. J. Chem. 60, 2725–2733 (1982).

    Article  CAS  Google Scholar 

  40. Bors, W., Michel, C. & Stettmaier, K. Radical species produced from the photolytic and pulse-radiolytic degradation of tert-butyl hydroperoxide. An EPR spin trapping investigation. J. Chem. Soc., Perkin Trans. 2, 1513–1517 (1992).

    Article  Google Scholar 

  41. Gephart, R. T. III et al. Reaction of CuI with dialkyl peroxides: CuII-alkoxides, alkoxy radicals, and catalytic C–H etherification. J. Am. Chem. Soc. 134, 17350–17353 (2012).

    Article  PubMed  CAS  Google Scholar 

  42. An, Q. et al. Identification of alkoxy radicals as hydrogen atom transfer agents in Ce-catalyzed C–H functionalization. J. Am. Chem. Soc. 145, 359–376 (2023).

    Article  PubMed  CAS  Google Scholar 

  43. Fan, L.-F., Liu, R., Ruan, X.-Y., Wang, P.-S. & Gong, L.-Z. Asymmetric 1,2-oxidative alkylation of conjugated dienes via aliphatic C–H bond activation. Nat. Synth. 1, 946–955 (2022).

    Article  CAS  Google Scholar 

  44. Chen, J. et al. Photoinduced copper-catalyzed asymmetric C–O cross-coupling. J. Am. Chem. Soc. 143, 13382–13392 (2021).

    Article  PubMed  CAS  Google Scholar 

  45. Wang, P.-Z. et al. Photoinduced copper-catalyzed asymmetric three-component coupling of 1,3-dienes: an alternative to Kharasch–Sosnovsky reaction. Angew. Chem. Int. Ed. 60, 22956–22962 (2021).

    Article  CAS  Google Scholar 

  46. Zhu, X. et al. Asymmetric radical carboesterification of dienes. Nat. Commun. 12, 6670 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Nie, Z. et al. Copper-catalyzed radical enantioselective carbo-esterification of styrenes enabled by a perfluoroalkylated-PyBox ligand. Angew. Chem. Int. Ed. 61, e202202077 (2022).

    Article  CAS  Google Scholar 

  48. Sowden, R. J., Yasmin, S., Rees, N. H., Bell, S. G. & Wong, L.-L. Biotransformation of the sesquiterpene (+)-valencene by cytochrome P450cam and P450BM-3. Org. Biomol. Chem. 3, 57–64 (2005).

    Article  PubMed  CAS  Google Scholar 

  49. Yan, X.-T. et al. Hyperhubeins A–I, bioactive sesquiterpenes with diverse skeletons from hypericum hubeiense. J. Nat. Prod. 86, 119–130 (2023).

    Article  PubMed  CAS  Google Scholar 

  50. Zhang, F. et al. Concise, scalable and enantioselective total synthesis of prostaglandins. Nat. Chem. 13, 692–697 (2021).

    Article  PubMed  CAS  Google Scholar 

  51. Baars, H., Classen, M. J. & Aggarwal, V. K. Synthesis of alfaprostol and PGF through 1,4-addition of an alkyne to an enal intermediate as the key step. Org. Lett. 19, 6008–6011 (2017).

    Article  PubMed  CAS  Google Scholar 

  52. Chen, X., Li, H.-H. & Kramer, S. Photoinduced copper-catalyzed enantioselective allylic C(sp3)–H oxidation of acyclic 1-aryl-2-alkyl alkenes as limiting substrates. Angew. Chem. Int. Ed. 63, e202413190 (2024).

    Article  CAS  Google Scholar 

  53. Liu, X.-M. et al. Catalytic asymmetric oxidative coupling between C(sp3)–H bonds and carboxylic acids. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv-2024-hqqb0 (2024).

  54. Tang, S., Xu, H., Dang, Y. & Yu, S. Photoexcited copper-catalyzed enantioselective allylic C(sp3)–H acyloxylation of acyclic internal alkenes. J. Am. Chem. Soc. 146, 27196–27203 (2024).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Key R&D Program of China (grant 2021YFA1500100), the National Natural Science Foundation of China (grants 22331012, 91956202, 92256301 and 21821002), the Science and Technology Commission of Shanghai Municipality (grants 20JC1417000 and 21520780100) and the International Partnership Program (grant 121731KYS-B20190016) of the Chinese Academy of Sciences and the Research Grants Council of Hong Kong (HKUST 16300620 and 16302222). H.Z. thanks Y. Zhang for the EPR manipulation and analysis. G.L. acknowledges support from the Tencent Foundation through the New Cornerstone Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

H.Z., Y.Z., J.W. and G.L. conceived the work and designed the experiments. H.Z. and Y.Z. performed the predominated laboratory experiments, and J.W. contributed partly. T.Y. and Z.L. conducted DFT calculation. H.Z., Y.Z., P.C., Z.L. and G.L. analysed the data and wrote the manuscript.

Corresponding authors

Correspondence to Zhenyang Lin or Guosheng Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Albert Poater and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Tables 1–5, methods and references.

Supplementary Data 1

DFT-calculated Cartesian coordinates.

Supplementary Data 2

X-ray structure of (S)-9.

Supplementary Data 3

checkCIF report.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhou, Y., Yang, T. et al. Site- and enantioselective allylic and propargylic C–H oxidation enabled by copper-based biomimetic catalysis. Nat Catal 8, 58–66 (2025). https://doi.org/10.1038/s41929-024-01276-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-024-01276-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing