Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Breaking the linear scaling limit in multi-electron-transfer electrocatalysis through intermediate spillover

Abstract

The linear scaling relationships between the adsorption energies of multiple intermediates constrain the maximum reaction activity of heterogeneous catalysis. Here we propose an intermediate spillover strategy to decouple the elementary electron-transfer steps in an electrochemical reaction by building a bi-component interface, thereby independently tuning the corresponding intermediate adsorption at an individual catalytic surface. Taking the electrocatalytic oxygen reduction reaction as an example, oxophilic sites are preferable for activating oxygen molecules, then the adsorbed OH* intermediates spontaneously migrate to the adjacent sites with a weaker oxygen binding energy, where OH* intermediates are further reduced and desorbed to complete the overall catalytic cycle. Consequently, the designed Pd/Ni(OH)2 catalyst can remarkably elevate the half-wave potential of the oxygen reduction reaction to ~70 mV higher than that of the Pt/C catalyst, surmounting the theoretical overpotential limit of Pd. This design principle highlights an opportunity for utilizing intermediate spillover to break the ubiquitous scaling relationships in multi-step catalytic reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Theoretical design of the OH*-spillover-based ORR pathway.
Fig. 2: Structural characterization and ORR performance.
Fig. 3: In situ HERFD X-ray absorption spectroscopy measurements and kinetic energy barrier calculations.
Fig. 4: Intermediate-spillover-based OER pathway.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Sabatier, P. La Catalyse en Chimie Organique (Librarie Polytechnique, 1913).

  3. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  PubMed  Google Scholar 

  4. Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    Article  PubMed  Google Scholar 

  5. Nørskov, J. K., Abild-Pedersen, F., Studt, F. & Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl Acad. Sci. USA 108, 937–943 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bligaard, T. et al. The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 224, 206–217 (2004).

    Article  CAS  Google Scholar 

  7. Abild-Pedersen, F. et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99, 016105 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Zhao, Z.-J. et al. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nat. Rev. Mater. 4, 792–804 (2019).

    Article  Google Scholar 

  9. Montoya, J. H. et al. Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2017).

    Article  Google Scholar 

  10. Wang, Q., Cheng, Y., Yang, H. B., Su, C. & Liu, B. Integrative catalytic pairs for efficient multi-intermediate catalysis. Nat. Nanotechnol. 19, 1442–1451 (2024).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, P. et al. Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nat. Chem. 9, 64–70 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Kibsgaard, J. & Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy 4, 430–433 (2019).

    Article  Google Scholar 

  13. Wang, X. et al. Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature 611, 702–708 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Vojvodic, A. & Nørskov, J. K. New design paradigm for heterogeneous catalysts. Natl Sci. Rev. 2, 140–143 (2015).

    Article  CAS  Google Scholar 

  15. Khorshidi, A., Violet, J., Hashemi, J. & Peterson, A. A. How strain can break the scaling relations of catalysis. Nat. Catal. 1, 263–268 (2018).

    Article  Google Scholar 

  16. Pérez-Ramírez, J. & López, N. Strategies to break linear scaling relationships. Nat. Catal. 2, 971–976 (2019).

    Article  Google Scholar 

  17. Xiong, L. et al. Breaking the linear scaling relationship by compositional and structural crafting of ternary Cu–Au/Ag nanoframes for electrocatalytic ethylene production. Angew. Chem. Int. Ed. 60, 2508–2518 (2021).

    Article  CAS  Google Scholar 

  18. Gao, Q. et al. Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights. Nat. Commun. 13, 2338 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, B. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Q. et al. Atomic metal–non-metal catalytic pair drives efficient hydrogen oxidation catalysis in fuel cells. Nat. Catal. 6, 916–926 (2023).

    Article  CAS  Google Scholar 

  21. Xiong, M., Gao, Z. & Qin, Y. Spillover in heterogeneous catalysis: new insights and opportunities. ACS Catal. 11, 3159–3172 (2021).

    Article  CAS  Google Scholar 

  22. Jiang, L. et al. Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts. Nat. Nanotechnol. 15, 848–853 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Dai, J. et al. Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis. Nat. Commun. 13, 1189 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shen, X. et al. Dual-site cascade oxygen reduction mechanism on SnOx/Pt-Cu-Ni for promoting reaction kinetics. J. Am. Chem. Soc. 141, 9463–9467 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Liu, Y. et al. Direct observation of accelerating hydrogen spillover via surface-lattice-confinement effect. Nat. Commun. 14, 613 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koper, M. T. M. Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis. J. Electroanal. Chem. 660, 254–260 (2011).

    Article  CAS  Google Scholar 

  27. Yang, C.-L. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 374, 459–464 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Gao, R. et al. Pt/Fe2O3 with Pt–Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading. Nat. Energy 6, 614–623 (2021).

    Article  CAS  Google Scholar 

  29. Lopes, P. P. et al. Eliminating dissolution of platinum-based electrocatalysts at the atomic scale. Nat. Mater. 19, 1207–1214 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Christensen, R., Hansen, H. A., Dickens, C. F., Nørskov, J. K. & Vegge, T. Functional independent scaling relation for ORR/OER catalysts. J. Phys. Chem. C 120, 24910–24916 (2016).

    Article  CAS  Google Scholar 

  32. Zhang, J., Yang, H. B., Zhou, D. & Liu, B. Adsorption energy in oxygen electrocatalysis. Chem. Rev. 122, 17028–17072 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Markovic, N., Gasteiger, H. & Ross, P. N. Kinetics of oxygen reduction on Pt(hkl) electrodes: implications for the crystallite size effect with supported Pt electrocatalysts. J. Electrochem. Soc. 144, 1591 (1997).

    Article  CAS  Google Scholar 

  34. Antolini, E. Palladium in fuel cell catalysis. Energy Environ. Sci. 2, 915–931 (2009).

    Article  CAS  Google Scholar 

  35. Yang, Y. et al. Combinatorial studies of palladium-based oxygen reduction electrocatalysts for alkaline fuel cells. J. Am. Chem. Soc. 142, 3980–3988 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, J. et al. In situ precise tuning of bimetallic electronic effect for boosting oxygen reduction catalysis. Nano Lett. 21, 7753–7760 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Mori, K. et al. Phenylamine-functionalized mesoporous silica supported PdAg nanoparticles: a dual heterogeneous catalyst for formic acid/CO2-mediated chemical hydrogen delivery/storage. Chem. Commun. 53, 4677–4680 (2017).

    Article  CAS  Google Scholar 

  38. Mori, K., Sano, T., Kobayashi, H. & Yamashita, H. Surface engineering of a supported PdAg catalyst for hydrogenation of CO2 to formic acid: elucidating the active Pd atoms in alloy nanoparticles. J. Am. Chem. Soc. 140, 8902–8909 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Zamora Zeledón, J. A. et al. Tuning the electronic structure of Ag–Pd alloys to enhance performance for alkaline oxygen reduction. Nat. Commun. 12, 620 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang, X. P. et al. Strain stabilized nickel hydroxide nanoribbons for efficient water splitting. Energy Environ. Sci. 13, 229–237 (2020).

    Article  CAS  Google Scholar 

  41. Wang, Q. et al. Long-term stability challenges and opportunities in acidic oxygen evolution electrocatalysis. Angew. Chem. Int. Ed. 62, e202216645 (2023).

    Article  CAS  Google Scholar 

  42. Dong, J.-C. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4, 60–67 (2019).

    Article  CAS  Google Scholar 

  43. Zhang, X.-L. et al. Strongly coupled cobalt diselenide monolayers for selective electrocatalytic oxygen reduction to H2O2 under acidic conditions. Angew. Chem. Int. Ed. 60, 26922–26931 (2021).

    Article  CAS  Google Scholar 

  44. Yang, J. et al. Dynamic behavior of single-atom catalysts in electrocatalysis: identification of Cu-N3 as an active site for the oxygen reduction reaction. J. Am. Chem. Soc. 143, 14530–14539 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Tromp, M. et al. High energy resolution fluorescence detection X-ray absorption spectroscopy: detection of adsorption sites in supported metal catalysts. AIP Conf. Proc. 882, 651–653 (2007).

    Article  CAS  Google Scholar 

  46. Wang, J., Zhou, J., Hu, Y. & Regier, T. Chemical interaction and imaging of single Co3O4/graphene sheets studied by scanning transmission X-ray microscopy and X-ray absorption spectroscopy. Energy Environ. Sci. 6, 926–934 (2013).

    Article  CAS  Google Scholar 

  47. Gaur, A. & Shrivastava, B. D. Speciation using X-ray absorption fine structure (XAFS). Rev. J. Chem. 5, 361–398 (2015).

    Article  CAS  Google Scholar 

  48. Wang, Q. et al. Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting. Nat. Commun. 11, 4246 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, J. et al. Exceptionally active and stable RuO2 with interstitial carbon for water oxidation in acid. Chem 8, 1673–1687 (2022).

    Article  CAS  Google Scholar 

  50. Wu, T. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2, 763–772 (2019).

    Article  CAS  Google Scholar 

  51. Peng, L. et al. Atomic cation-vacancy engineering of NiFe-layered double hydroxides for improved activity and stability towards the oxygen evolution reaction. Angew. Chem. Int. Ed. 60, 24612–24619 (2021).

    Article  CAS  Google Scholar 

  52. Zhu, Y. et al. Oxygen activation on Ba-containing perovskite materials. Sci. Adv. 8, eabn4072 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, J. et al. Advances in thermodynamic-kinetic model for analyzing the oxygen evolution reaction. ACS Catal. 10, 8597–8610 (2020).

    Article  CAS  Google Scholar 

  54. Wang, J. et al. Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 4, 212–222 (2021).

    Article  Google Scholar 

  55. Jin, Z. et al. Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat. Catal. 4, 615–622 (2021).

    Article  CAS  Google Scholar 

  56. Luo, M. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 574, 81–85 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Liang, J. et al. Gas-balancing adsorption strategy towards noble-metal-based nanowire electrocatalysts. Nat. Catal. 7, 719–732 (2024).

    Article  CAS  Google Scholar 

  58. Liu, C. et al. Oxygen evolution reaction over catalytic single-site Co in a well-defined brookite TiO2 nanorod surface. Nat. Catal. 4, 36–45 (2021).

    Article  CAS  Google Scholar 

  59. Liu, S. et al. A top-down strategy for amorphization of hydroxyl compounds for electrocatalytic oxygen evolution. Nat. Commun. 13, 1187 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, B. et al. High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nat. Catal. 3, 985–992 (2020).

    Article  CAS  Google Scholar 

  61. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  62. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  63. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  64. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  65. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  Google Scholar 

  66. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  CAS  Google Scholar 

  67. VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    Article  PubMed  Google Scholar 

  68. Woo, T. K., Margl, P. M., Blöchl, P. E. & Ziegler, T. A combined Car-Parrinello QM/MM implementation for ab initio molecular dynamics simulations of extended systems: application to transition metal catalysis. J. Phys. Chem. B 101, 7877–7880 (1997).

    Article  CAS  Google Scholar 

  69. Sprik, M. & Ciccotti, G. Free energy from constrained molecular dynamics. J. Chem. Phys. 109, 7737–7744 (1998).

    Article  CAS  Google Scholar 

  70. Cramer, C. J. Essentials of Computational Chemistry: Theories and Models 2nd edn (Wiley, 2004).

  71. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  PubMed  Google Scholar 

  72. Jones, R. O. & Gunnarsson, O. The density functional formalism, its applications and prospects. Rev. Mod. Phys. 61, 689–746 (1989).

    Article  CAS  Google Scholar 

  73. Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1, 552–556 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Viswanathan, V., Hansen, H. A., Rossmeisl, J. & Nørskov, J. K. Universality in oxygen reduction electrocatalysis on metal surfaces. ACS Catal. 2, 1654–1660 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the City University of Hong Kong startup fund (9020003), an ITF-RTH–Global STEM Professorship (9446006), and the JC STEM lab of Advanced CO2 Upcycling (9228005). S.-F.H. acknowledges financial support from the National Science and Technology Council, Taiwan (contract no. NSTC 111-2628-M-A49-008) and Yushan Young Scholar Program and the Center for Emergent Functional Matter Science, Ministry of Education, Taiwan. H.B.T. acknowledges financial support from the National Key R&D Program of China (2023YFB4004600). H.B.Y. acknowledges support from the National Natural Science Foundation of China under grant no. 22075195. W.L. is grateful for support from the National Natural Science Foundation of China (22427801). Y.X. acknowledges financial support from the National Natural Science Foundation of China (22478348). C.S. is financially supported by the National Key Research and Development Program of China (2021YFA1600800). J.G.C. is sponsored by the US Department of Energy (contract no. DE-SC0012704).

Author information

Authors and Affiliations

Authors

Contributions

Q.W., H.B.T. and B.L. conceived and designed the project. Q.W., K.L., H.B.T., L.Z., J.Z., Y.C., J.C. and Y.X. performed the catalyst synthesis, structural characterizations and electrochemical measurements. S.-F.H., H.B.Y., N.H. and Y.L. acquired the X-ray absorption spectroscopies and provided expertise for data analysis. W.L. and W.W. obtained the TEM images. X.H. and F.L. carried out the theoretical calculations. Q.W., H.B.T., C.S., J.G.C. and B.L. discussed the results and drafted the paper. All authors reviewed and contributed to this paper.

Corresponding authors

Correspondence to Hua Bing Tao, Jingguang G. Chen or Bin Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Table of Contents; Supplementary Figs. 1–31, Tables 1–3 and References.

Supplementary Video 1

AIMD simulations for the spillover of adsorbed OH* from Pd sites to the nearby Ag surface.

Supplementary Data 1

Atomic coordinates of the optimized computational models, initial and final configurations in AIMD simulations.

Source data

Source Data Fig. 1

Source data Fig. 1

Source Data Fig. 2

Source data Fig. 2

Source Data Fig. 3

Source data Fig. 3

Source Data Fig. 4

Source data Fig. 4

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Hung, SF., Lao, K. et al. Breaking the linear scaling limit in multi-electron-transfer electrocatalysis through intermediate spillover. Nat Catal 8, 378–388 (2025). https://doi.org/10.1038/s41929-025-01323-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-025-01323-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing