Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unlocking Lewis acid catalysis in non-haem enzymes for an abiotic ene reaction

Abstract

Lewis acid catalysis is a powerful tool in organic synthesis. However, biocatalytic Lewis acid catalysis has been limited in its reaction scope and diversity, constraining its synthetic utility. In this study, we expand the scope of biocatalytic Lewis acid catalysis by integrating abiotic ene reactions into metalloenzymatic catalysis. We found that substituting the iron centre with copper enabled SadA, a non-haem iron hydroxylase from Burkholderia ambifaria, to catalyse abiotic Conia-ene reactions. A high-throughput screening platform based on fluorogenic click chemistry was developed to optimize this abiotic transformation. Using this platform, directed evolution was used to generate variants that produced a range of Conia-ene cyclization products with stereogenic quaternary carbon centres, achieving up to 99% yield, 250 total turnovers and 99% enantiomeric excess. Mechanistic studies suggested that the reaction proceeded through a dual activation mechanism, where the Cu(II) centre activated both the ketoester and alkyne moieties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptualization of abiological metalloenzymatic Conia-ene reactions.
Fig. 2: Discovery and optimization of metalloenzymatic Conia-ene reaction.
Fig. 3: Substrate scope of enzymatic Conia-ene reaction catalysed by SadA-ene.
Fig. 4: Mechanistic studies.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available in the paper and the Supplementary Information. All biological materials, such as plasmids generated in this study, are available from the corresponding authors upon request.

References

  1. Yamamoto, H. Lewis Acids in Organic Synthesis Vols. 1 and 2 (Wiley-VCH, 2000).

  2. Mlynarski, J. Chiral Lewis Acids in Organic Synthesis (Wiley-VCH, 2017).

  3. Gajewska, E. P. et al. Algorithmic discovery of tactical combinations for advanced organic syntheses. Chem 6, 280–293 (2020).

    Article  CAS  Google Scholar 

  4. Mitic, N. et al. The catalytic mechanisms of binuclear metallohydrolases. Chem. Rev. 106, 3338–3363 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Yang, W. Nucleases: diversity of structure, function and mechanism. Q. Rev. Biophys. 44, 1–93 (2011).

    Article  PubMed  Google Scholar 

  6. Bertini, I., Gray, H. B., Stiefel, E. I. & Valentine, J. S. Biological Inorganic Chemistry, Structure and Reactivity (Univ. Science Books, 2007).

    Google Scholar 

  7. Christianson, D. W. Structural and chemical biology of terpenoid cyclases. Chem. Rev. 117, 11570–11648 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jeon, B. S., Wang, S. A., Ruszczycky, M. W. & Liu, H. W. Natural [4 + 2]-cyclases. Chem. Rev. 117, 5367–5388 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Hélaine, V., Gastaldi, C., Lemaire, M., Clapés, P. & Guérard-Hélaine, C. Recent advances in the substrate selectivity of aldolases. ACS Catal. 12, 733–761 (2021).

    Article  Google Scholar 

  10. Schwizer, F. et al. Artificial metalloenzymes: reaction scope and optimization strategies. Chem. Rev. 118, 142–231 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Van Stappen, C. et al. Designing artificial metalloenzymes by tuning of the environment beyond the primary coordination sphere. Chem. Rev. 122, 11974–12045 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ghattas, W., Mahy, J.-P., Réglier, M. & Simaan, A. J. Artificial enzymes for Diels-Alder reactions. Chem. Bio. Chem. 22, 443–459 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Basler, S. et al. Efficient Lewis acid catalysis of an abiological reaction in a de novo protein scaffold. Nat. Chem. 13, 231–235 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Podtetenieff, J., Taglieber, A., Bill, E., Reijerse, E. J. & Reetz, M. T. An artificial metalloenzyme: creation of a designed copper binding site in a thermostable protein. Angew. Chem. Int. Ed. 49, 5151–5155 (2010).

    Article  CAS  Google Scholar 

  15. Reetz, M. T. & Jiao, N. Copper–phthalocyanine conjugates of serum albumins as enantioselective catalysts in Diels–Alder reactions. Angew. Chem. Int. Ed. 45, 2416–2419 (2006).

    Article  CAS  Google Scholar 

  16. Coquière, D., Bos, J., Beld, J. & Roelfes, G. Enantioselective artificial metalloenzymes based on a bovine pancreatic polypeptide scaffold. Angew. Chem. Int. Ed. 48, 5159–5162 (2009).

    Article  Google Scholar 

  17. Ghattas, W. et al. CuII-containing 1-aminocyclopropane carboxylic acid oxidase is an efficient stereospecific Diels–Alderase. Angew. Chem. Int. Ed. 58, 14605–14609 (2019).

    Article  CAS  Google Scholar 

  18. Roelfes, G. & Feringa, B. L. DNA-based asymmetric catalysis. Angew. Chem. Int. Ed. 44, 3230–3232 (2005).

    Article  CAS  Google Scholar 

  19. Leveson-Gower, R. B. & Roelfes, G. Biocatalytic Friedel–Crafts reactions. Chem. Cat. Chem. 14, e202200636 (2022).

    CAS  PubMed  Google Scholar 

  20. Drienovská, I., Rioz-Martínez, A., Draksharapu, A. & Roelfes, G. Novel artificial metalloenzymes by in vivo incorporation of metal-binding unnatural amino acids. Chem. Sci. 6, 770–776 (2015).

    Article  PubMed  Google Scholar 

  21. Bos, J., Browne, W. R., Driessen, A. J. M. & Roelfes, G. Supramolecular assembly of artificial metalloenzymes based on the dimeric protein LmrR as promiscuous scaffold. J. Am. Chem. Soc. 137, 9796–9799 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Fujieda, N. et al. Cupin variants as a macromolecular ligand library for stereoselective Michael addition of nitroalkanes. Angew. Chem. Int. Ed. 59, 7717–7720 (2020).

    Article  CAS  Google Scholar 

  23. Zhou, Z. & Roelfes, G. Synergistic catalysis in an artificial enzyme by simultaneous action of two abiological catalytic sites. Nat. Catal. 3, 289–294 (2020).

    Article  CAS  Google Scholar 

  24. Longwitz, L. et al. Boron catalysis in a designer enzyme. Nature 629, 824–829 (2024).

    Article  CAS  PubMed  Google Scholar 

  25. Ji, P., Park, J., Gu, Y., Clark, D. S. & Hartwig, J. F. Abiotic reduction of ketones with silanes catalysed by carbonic anhydrase through an enzymatic zinc hydride. Nat. Chem. 13, 312–318 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, X. et al. Repurposing myoglobin into an abiological asymmetric ketoreductase. Chem 10, 2577–2589 (2024).

    Article  CAS  Google Scholar 

  27. Mikami, K. & Shimizu, M. Asymmetric ene reactions in organic synthesis. Chem. Rev. 92, 1021–1050 (2002).

    Article  Google Scholar 

  28. Ohashi, M. et al. An enzymatic alder-ene reaction. Nature 586, 64–69 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hammer, S. C., Marjanovic, A., Dominicus, J. M., Nestl, B. M. & Hauer, B. Squalene hopene cyclases are protonases for stereoselective Brønsted acid catalysis. Nat. Chem. Biol. 11, 121–126 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Bastian, S. A., Hammer, S. C., Kreß, N., Nestl, B. M. & Hauer, B. Selectivity in the cyclization of citronellal introduced by squalene hopene cyclase variants. Chem. Cat. Chem. 9, 4364–4368 (2017).

    CAS  Google Scholar 

  31. Hack, D., Blumel, M., Chauhan, P., Philipps, A. R. & Enders, D. Catalytic Conia-ene and related reactions. Chem. Soc. Rev. 44, 6059–6093 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Lin, E.-Z., Xu, Y., Ji, K. & Ye, L.-W. Recent advances towards catalytic asymmetric Conia-ene-type reactions. Chin. Chem. Lett. 32, 954–962 (2021).

    Article  CAS  Google Scholar 

  33. Corkey, B. K. & Toste, F. D. Catalytic enantioselective Conia-ene reaction. J. Am. Chem. Soc. 127, 17168–17169 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Matsuzawa, A., Mashiko, T., Kumagai, N. & Shibasaki, M. La/Ag heterobimetallic cooperative catalysis: a catalytic asymmetric Conia-ene reaction. Angew. Chem. Int. Ed. 50, 7616–7619 (2011).

    Article  CAS  Google Scholar 

  35. Shaw, S. & White, J. D. A new iron(III)–salen catalyst for enantioselective Conia-ene carbocyclization. J. Am. Chem. Soc. 136, 13578–13581 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Suzuki, S. et al. Enantioselective 5-endo-dig carbocyclization of β-ketoesters with internal alkynes employing a four-component catalyst system. Angew. Chem. Int. Ed. 51, 4131–4135 (2012).

    Article  CAS  Google Scholar 

  37. Yang, T., Ferrali, A., Sladojevich, F., Campbell, L. & Dixon, D. J. Brønsted base/Lewis acid cooperative catalysis in the enantioselective Conia-ene reaction. J. Am. Chem. Soc. 131, 9140–9141 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. El Bakkali-Taheri, N. et al. Characterization of Cu(II)-reconstituted ACC oxidase using experimental and theoretical approaches. Arch. Biochem. Biophys. 623-624, 31–41 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Pordea, A. Metal-binding promiscuity in artificial metalloenzyme design. Curr. Opin. Chem. Biol. 25, 124–132 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Eom, H. & Song, W. J. Emergence of metal selectivity and promiscuity in metalloenzymes. J. Biol. Inorg. Chem. 24, 517–531 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Natoli, S. N. & Hartwig, J. F. Noble-metal substitution in hemoproteins: an emerging strategy for abiological catalysis. Acc. Chem. Res. 52, 326–335 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fujieda, N. et al. A well-defined osmium–cupin complex: hyperstable artificial osmium peroxygenase. J. Am. Chem. Soc. 139, 5149–5155 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Moore, E. J. et al. Chemoselective cyclopropanation over carbene Y–H insertion catalyzed by an engineered carbene transferase. J. Org. Chem. 83, 7480–7490 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jing, Q. & Kazlauskas, R. J. Regioselective hydroformylation of styrene using rhodium-substituted carbonic anhydrase. Chem. Cat. Chem. 2, 953–957 (2010).

    CAS  Google Scholar 

  45. Goldberg, N. W., Knight, A. M., Zhang, R. K. & Arnold, F. H. Nitrene transfer catalyzed by a non-heme iron enzyme and enhanced by non-native small-molecule ligands. J. Am. Chem. Soc. 141, 19585–19588 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rui, J. et al. Merging photoredox with metalloenzymatic catalysis for enantioselective decarboxylative C(sp3)‒N3 and C(sp3)‒SCN bond formation. Nat. Catal. 7, 1394–1403.

  47. Rui, J. et al. Directed evolution of nonheme iron enzymes to access abiological radical-relay C(sp3)-H azidation. Science 376, 869–874 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vila, M. A. et al. C–H amination via nitrene transfer catalyzed by mononuclear non-heme iron-dependent enzymes. Chem. Bio. Chem. 21, 1981–1987 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Zhao, Q. et al. Engineering non-haem iron enzymes for enantioselective C(sp3)–F bond formation via radical fluorine transfer. Nat. Synth. 3, 958–966 (2024).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, J., Huls, A., Palacios, P. M., Guo, Y. & Huang, X. Biocatalytic generation of trifluoromethyl radicals by nonheme iron enzymes for enantioselective alkene difunctionalization. J. Am. Chem. Soc. 146, 34878–34886 (2024).

    Article  CAS  PubMed  Google Scholar 

  51. Reetz, M. T. & Carballeira, J. D. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat. Protoc. 2, 891–903 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Mitchell, A. J. et al. Structure-guided reprogramming of a hydroxylase to halogenate its small molecule substrate. Biochemistry 56, 441–444 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Kennedy-Smith, J. J., Staben, S. T. & Toste, F. D. Gold(I)-catalyzed Conia-ene reaction of β-ketoesters with alkynes. J. Am. Chem. Soc. 126, 4526–4527 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Itoh, Y. et al. Efficient formation of ring structures utilizing multisite activation by indium catalysis. J. Am. Chem. Soc. 130, 17161–17167 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Brandis, J. E. P., Zalesak, S. M., Kane, M. A. & Michel, S. L. J. Cadmium exchange with zinc in the non-classical zinc finger protein tristetraprolin. Inorg. Chem. 60, 7697–7707 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shimberg, G. D., Ok, K., Neu, H. M., Splan, K. E. & Michel, S. L. J. Cu(I) disrupts the structure and function of the nonclassical zinc finger protein tristetraprolin (TTP). Inorg. Chem. 56, 6838–6848 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Sawa, M. et al. Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo. Proc. Natl Acad. Sci. USA 103, 12371–12376 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Blümel, M., Hack, D., Ronkartz, L., Vermeeren, C. & Enders, D. Development of an enantioselective amine–silver co-catalyzed Conia-ene reaction. Chem. Commun. 53, 3956–3959 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We thank P. Mortimer and the Johns Hopkins University (JHU) Mass Spectrometry Facility for analytical support. Financial support was provided by the JHU and the David and Lucile Packard Foundation (to X. Huang). S.L.J.M. is grateful to the NSF (grant no. CHE 2106417) for support. This work was also supported by the National Natural Science Foundation of China (grant nos. 22371256, 21978272) (to Y.Y.) and the Fundamental Research Funds for the Provincial Universities of Zhejiang (grant no. RF-C2022006) (to Y.Y.). X.H. thanks National Key R&D Program of China (grant no. 2022YFA1504301), the National Natural Science Foundation of China (grant nos. 22122109 and 22271253), Zhejiang Provincial Natural Science Foundation of China under grant no. LDQ23B020002 and the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study (grant no. SN-ZJU-SIAS-006) for support. This work was also supported by the Generalitat de Catalunya AGAUR grant no. 2021SGR00623 project (to M.G.-B.) and the Spanish MICINN (Ministerio de Ciencia e Innovación) grant nos. PID2019-111300GA-I00, PID2022-141676NB-I00 and TED2021-130173B-C42 projects, and grant no. RYC 2020-028628-I (to M.G.-B.).

Author information

Authors and Affiliations

Authors

Contributions

X. Huang conceived the project. X. Huang and X.M. designed the experiments. X.M. performed initial screening. X.M. and X.J. performed directed evolution experiments and results analysis. X.M., X.J., L.T.M.G. and J.R. performed substrate scope study. X.J., L.T.M.G., M.M.W. and A.D.R. performed ICP-MS analysis under the guidance of S.L.J.M. Y.Y. directed the computational studies. X. Hong, X.C. and H.W. performed DFT calculations. X.C. performed molecular dynamics simulation studies under the guidance of Y.Y. Results analyses of all computational data were performed by M.G.-B., Y.Y., X. Hong, X.C. and H.W., with input from X. Huang. X. Huang wrote the manuscript with input from all other authors. Y.Y. and X. Hong wrote the computational section of the manuscript and the Supplementary Information.

Corresponding authors

Correspondence to Yunfang Yang or Xiongyi Huang.

Ethics declarations

Competing interests

A provisional patent application has been under preparation through Johns Hopkins University based on the results presented herein with X. Huang, J.R., X.J. and X.M. as inventors (JHU reference no. C18543). The other authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Bernhard Hauer, Ru Jiang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–14, Figs. 1–14, Notes 1–14 and References.

Reporting Summary

Supplementary Data 1

Coordinates from molecular dynamics simulations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, X., Ji, X., Chen, X. et al. Unlocking Lewis acid catalysis in non-haem enzymes for an abiotic ene reaction. Nat Catal (2025). https://doi.org/10.1038/s41929-025-01350-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41929-025-01350-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing