Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Extreme rainfall reduces one-twelfth of China’s rice yield over the last two decades

Abstract

Extreme climate events constitute a major risk to global food production. Among these, extreme rainfall is often dismissed from historical analyses and future projections, the impacts and mechanisms of which remain poorly understood. Here we used long-term nationwide observations and multi-level rainfall manipulative experiments to explore the magnitude and mechanisms of extreme rainfall impacts on rice yield in China. We find that rice yield reductions due to extreme rainfall were comparable to those induced by extreme heat over the last two decades, reaching 7.6 ± 0.9% (one standard error) according to nationwide observations and 8.1 ± 1.1% according to the crop model incorporating the mechanisms revealed from manipulative experiments. Extreme rainfall reduces rice yield mainly by limiting nitrogen availability for tillering that lowers per-area effective panicles and by exerting physical disturbance on pollination that declines per-panicle filled grains. Considering these mechanisms, we projected ~8% additional yield reduction due to extreme rainfall under warmer climate by the end of the century. These findings demonstrate that it is critical to account for extreme rainfall in food security assessments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Changes in rice yield (ΔY) induced by extreme climate events in China.
Fig. 2: Effects of simulated rainfall on rice yield and yield components.
Fig. 3: Schematic diagram of extreme rainfall impacts on rice yield.
Fig. 4: Future projections of additional yield change induced by extreme rainfall.

Similar content being viewed by others

Data availability

The data from the national agrometeorological observation network and the rainfall manipulative experiments are available in Supplementary Data 1. The climate data, records of extreme climate events, rice yield and phenology at the site scale from the CMA are available at https://data.cma.cn/en. Model input data for historical simulations and future projections are available from public data depositories listed in Supplementary Table 5. The GPM IMERGv6 are available at https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHH_06/summary. Model output data for historical simulations and future projections are available in Supplementary Data 2. Source data are provided with this paper.

Code availability

Source codes for data analyses are available from https://doi.org/10.6084/m9.figshare.19801765. Source codes for process-based model are available from http://forge.ipsl.jussieu.fr/orchidee, under the French Free Software license, compatible with the GNU GPL (http://cecill.info/licences.en.html).

References

  1. Field, C. B. et al. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2012).

  2. Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Ray, D. K., Gerber, J. S., MacDonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Proctor, J., Rigden, A., Chan, D. & Huybers, P. More accurate specification of water supply shows its importance for global crop production. Nat. Food 3, 753–763 (2022).

    Article  PubMed  Google Scholar 

  5. Vogel, E. et al. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 14, 054010 (2019).

    Article  ADS  Google Scholar 

  6. Hasegawa, T. et al. Extreme climate events increase risk of global food insecurity and adaptation needs. Nat. Food 2, 587–595 (2021).

    Article  PubMed  Google Scholar 

  7. Lobell, D. B. et al. Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 344, 516–519 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Lesk, C. et al. Stronger temperature–moisture couplings exacerbate the impact of climate warming on global crop yields. Nat. Food 2, 683–691 (2021).

    Article  PubMed  Google Scholar 

  9. Wang, X. H. et al. Emergent constraint on crop yield response to warmer temperature from field experiments. Nat. Sustain. 3, 908–916 (2020).

    Article  Google Scholar 

  10. Lobell, D. B., Sibley, A. & Ortiz-Monasterio, J. I. Extreme heat effects on wheat senescence in India. Nat. Clim. Change 2, 186–189 (2012).

    Article  ADS  Google Scholar 

  11. Zhang, J. Y., Li, X. M., Lin, H. X. & Chong, K. Crop improvement through temperature resilience. Annu. Rev. Plant Biol. 70, 753–780 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Lesk, C., Coffel, E. & Horton, R. Net benefits to US soy and maize yields from intensifying hourly rainfall. Nat. Clim. Change 10, 819–822 (2020).

    Article  ADS  Google Scholar 

  13. Li, Y., Guan, K. Y., Schnitkey, G. D., DeLucia, E. & Peng, B. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob. Change Biol. 25, 2325–2337 (2019).

    Article  ADS  Google Scholar 

  14. Webber, H. et al. Diverging importance of drought stress for maize and winter wheat in Europe. Nat. Commun. 9, 4249 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  15. Seneviratne, S. I. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1513–1766 (Cambridge Univ. Press, 2021).

  16. Crops and livestock products. FAOSTAT http://www.fao.org/faostat/en/#home (2019).

  17. Shaw, R. E. & Meyer, W. S. Improved empirical representation of plant responses to waterlogging for simulating crop yield. Agron. J. 107, 1711–1723 (2015).

    Article  CAS  Google Scholar 

  18. Zhu, P. et al. The critical benefits of snowpack insulation and snowmelt for winter wheat productivity. Nat. Clim. Change 12, 485–490 (2022).

    Article  ADS  Google Scholar 

  19. Wu, X. S. et al. On the event-based extreme precipitation across China: time distribution patterns, trends, and return levels. J. Hydrol. 562, 305–317 (2018).

    Article  ADS  Google Scholar 

  20. Lesk, C. et al. Compound heat and moisture extreme impacts on global crop yields under climate change. Nat. Rev. Earth Environ. 3, 872–889 (2022).

    Article  ADS  Google Scholar 

  21. Hou, X. K. et al. Detection and attribution of nitrogen runoff trend in China’s croplands. Environ. Pollut. 234, 270–278 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Gao, S. S. et al. Quantifying nitrogen leaching response to fertilizer additions in China’s cropland. Environ. Pollut. 211, 241–251 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Steiner, J. L., Briske, D. D., Brown, D. P. & Rottler, C. M. Vulnerability of Southern Plains agriculture to climate change. Clim. Change 146, 201–218 (2018).

    Article  ADS  Google Scholar 

  24. Mäkinen, H. et al. Sensitivity of European wheat to extreme weather. Field Crop Res. 222, 209–217 (2018).

    Article  Google Scholar 

  25. Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Win, A., Tanaka, T. S. T. & Matsui, T. Panicle inclination influences pollination stability of rice (Oryza sativa L.). Plant Prod Sci 23, 60–68 (2020).

    Article  Google Scholar 

  27. Wang, X. H. Impacts of Environmental Change on Rice Ecosystems in China: Development, Optimization and Application of ORCHIDEE-CROP Model. PhD thesis, Peking Univ. (2016).

  28. Yin, Z. et al. Improvement of the irrigation scheme in the ORCHIDEE land surface model and impacts of irrigation on regional water budgets over China. J. Adv. Model Earth Syst. 12, e2019MS001770 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huffman, G. J., Stocker, E. F., Bolvin, D. T., Nelkin, E. J. & Tan, J. GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V06, Greenbelt, MD. Goddard Earth Sciences Data and Information Services Center https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHH_06/summary (2019).

  30. Cui, X. Q. et al. Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation. Nat. Food 2, 886–893 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Jian, Y. W., Fu, J., Li, B. G. & Zhou, F. Increased extreme hourly precipitation over China’s rice paddies from 1961 to 2012. Sci. Rep. 10, 10609 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Jägermeyr, J. et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2, 873–885 (2021).

    Article  PubMed  Google Scholar 

  34. Yang, H., Jiang, Z. H. & Li, L. Biases and improvements in three dynamical downscaling climate simulations over China. Clim. Dyn. 47, 3235–3251 (2016).

    Article  Google Scholar 

  35. Chen, W. L., Jiang, Z. H., Li, L. & Yiou, P. Simulation of regional climate change under the IPCC A2 scenario in southeast China. Clim. Dyn. 36, 491–507 (2011).

    Article  Google Scholar 

  36. Barbier, F. F., Dun, E. A., Kerr, S. C., Chabikwa, T. G. & Beveridge, C. A. An update on the signals controlling shoot branching. Trends Plant Sci. 24, 220–236 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G. E. D. & Schroeder, J. I. Genetic strategies for improving crop yields. Nature 575, 109–118 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Iizumi, T. et al. Prediction of seasonal climate-induced variations in global food production. Nat. Clim. Change 3, 904–908 (2013).

    Article  ADS  Google Scholar 

  39. Meier, J., Zabel, F. & Mauser, W. A global approach to estimate irrigated areas—a comparison between different data and statistics. Hydrol. Earth Syst. Sci. 22, 1119–1133 (2018).

    Article  ADS  Google Scholar 

  40. Lepore, C., Allen, J. T. & Tippett, M. K. Relationships between hourly rainfall intensity and atmospheric variables over the contiguous United States. J. Clim. 29, 3181–3197 (2016).

    Article  ADS  Google Scholar 

  41. Atlas, D., Srivastava, R. C. & Sekhon, R. S. Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. 11, 1–35 (1973).

    Article  ADS  Google Scholar 

  42. Higashino, M. & Stefan, H. G. Modeling the effect of rainfall intensity on soil-water nutrient exchange in flooded rice paddies and implications for nitrate fertilizer runoff to the Oita River in Japan. Water Resour. Res. 50, 8611–8624 (2014).

    Article  ADS  Google Scholar 

  43. Yoon, D. K. et al. Transgenic rice overproducing Rubisco exhibits increased yields with improved nitrogen-use efficiency in an experimental paddy field. Nat. Food 1, 134–139 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Gravois, K. A. & Helms, R. S. Effect of uneven emergence on rice yield, milling yield, and yield components. Aust. J. Exp. Agr. 34, 949–952 (1994).

    Article  Google Scholar 

  45. Wang, S. A. et al. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 9, 38–41 (2016).

    Article  ADS  CAS  Google Scholar 

  46. Ishibashi, M. & Terashima, I. Effects of continuous leaf wetness on photosynthesis—adverse aspects of rainfall. Plant Cell Environ. 18, 431–438 (1995).

    Article  Google Scholar 

  47. Bollen, K. A. Total, direct, and indirect effects in structural equation models. Sociol. Methodol. 17, 37–69 (1987).

    Article  Google Scholar 

  48. Wang, X. H. et al. Management outweighs climate change on affecting length of rice growing period for early rice and single rice in China during 1991–2012. Agric. For. Meteorol. 233, 1–11 (2017).

    Article  ADS  CAS  Google Scholar 

  49. Müller, C. et al. Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. Geosci. Model Dev. 10, 1403–1422 (2017).

    Article  ADS  Google Scholar 

  50. Wu, X. et al. ORCHIDEE-CROP (v0), a new process-based agro-land surface model: model description and evaluation over Europe. Geosci. Model Dev. 9, 857–873 (2016).

    Article  ADS  Google Scholar 

  51. Kobayasi, K., Matsui, T., Yoshimoto, M. & Hasegawa, T. Effects of temperature, solar radiation, and vapor-pressure deficit on flower opening time in rice. Plant Prod. Sci. 13, 21–28 (2010).

    Article  Google Scholar 

  52. Julia, C. & Dingkuhn, M. Variation in time of day of anthesis in rice in different climatic environments. Eur. J. Agron. 43, 166–174 (2012).

    Article  Google Scholar 

  53. Hempel, S., Frieler, K., Warszawski, L., Schewe, J. & Piontek, F. A trend-preserving bias correction—the ISI-MIP approach. Earth Syst. Dyn. 4, 219–236 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (42225102 and 41977082, F.Z.; 42007079, J.F.; 42171096, X.W.; 41530528, S.L.P). We acknowledge K. Liu, J. Wang and L. Shu from Jingzhou Agrometeorological Experimental Station, S. Wang, W. Adalibieke, Y. Bo, C. Wu, W. Jiang, M. Yuan, H. Cai and C. Wang from Peking University, X. Huang, L. Chen and D. Zhuang from Central China Normal University and C. Li from South China Sea Institute of Oceanography, Chinese Academic of Science for supporting field experiments and laboratory analyses. We acknowledge the CMA for nationwide observations of rice yield, phenology, hourly precipitation and extreme climate events, and the NASA for GPM IMERGv6 data.

Author information

Authors and Affiliations

Authors

Contributions

F.Z. designed the study. Y.J., J.F. and X.W. performed all computational analyses. F.Z., X.W., J.F. and Y.J. drafted the paper. L.L. provided high-resolution climate projection using the IPSL model. All co-authors reviewed and commented on the paper.

Corresponding author

Correspondence to Feng Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks David Makowski, Yan Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Texts 1 and 2, Figs. 1–23, Tables 1–5 and Data 1 and 2.

Reporting Summary

Supplementary Data 1

Long-term nationwide observations and multi-level rainfall manipulative experiments dataset.

Supplementary Data 2

Model output data.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Jian, Y., Wang, X. et al. Extreme rainfall reduces one-twelfth of China’s rice yield over the last two decades. Nat Food 4, 416–426 (2023). https://doi.org/10.1038/s43016-023-00753-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-023-00753-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing