Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large-scale proteomic analyses of incident Parkinson’s disease reveal new pathophysiological insights and potential biomarkers

Abstract

The early pathophysiology of Parkinson’s disease (PD) is poorly understood. We analyzed 2,920 Olink-measured plasma proteins in 51,804 UK Biobank participants, identifying 859 incident PD cases after 14.45 years. We found 38 PD-related proteins, with six of the top ten validated in the Parkinson’s Progression Markers Initiative (PPMI) cohort. ITGAV, HNMT and ITGAM showed consistent significant association (hazard ratio: 0.11–0.57, P = 6.90 × 10−24 to 2.10 × 10−11). Lipid metabolism dysfunction was evident 15 years before PD onset, and levels of BAG3, HPGDS, ITGAV and PEPD continuously decreased before diagnosis. These proteins were linked to prodromal symptoms and brain measures. Mendelian randomization suggested ITGAM and EGFR as potential causes of PD. A predictive model using machine learning combined the top 16 proteins and demographics, achieving high accuracy for 5-year (area under the curve (AUC) = 0.887) and over-5-year PD prediction (AUC = 0.816), outperforming demographic-only models. It was externally validated in PPMI (AUC = 0.802). Our findings reveal early peripheral pathophysiological changes in PD crucial for developing early biomarkers and precision therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study overview.
Fig. 2: Proteins associated with incident PD and their functional highlights.
Fig. 3: Temporal evolutions of plasma proteins before diagnosis of PD and their trajectory clustering.
Fig. 4: Associations between PD-related proteins and PD prodromal symptoms and brain structures.
Fig. 5: Predictor selection and importance, and ROC curves for the prediction of future PD.

Similar content being viewed by others

Data availability

The data used in the present study are available from the UKB, with restrictions applied. Data were used under a license and are thus not publicly available. Access to the UKB data can be requested through the standard protocol (https://www.ukbiobank.ac.uk/register-apply/). The PPMI (Parkinson’s Progression Markers Initiative) database is publicly available, and researchers can apply for access. To request data, please refer to the PPMI Data User Guide at: https://www.ppmi-info.org/sites/default/files/docs/PPMI%20Data%20User%20Guide.pdf. This guide provides detailed instructions on how to apply for access and outlines the associated usage policies. We obtained protein quantitative trait loci (pQTLs) from the GWAS summary statistics in the UKB-PPP, which includes 34,557 participants of European ancestry (https://www.nature.com/articles/s41586-023-06592-6). GWAS summary statistics on PD were obtained from a meta-analysis conducted by the International Parkinson’s Disease Genomics Consortium with a total of 33,674 cases and 449,056 controls of European descent (https://gwas.mrcieu.ac.uk/datasets/ieu-b-7/).

Code availability

Analyses were performed using R software (v4.3.1) and Python (v3.9). We considered a two-tailed P value < 0.05 to be significant. Code is available at https://github.com/YiHanGan/PD-Proteomic-Project.

References

  1. Yan, S. et al. Neuronally derived extracellular vesicle α-synuclein as a serum biomarker for individuals at risk of developing Parkinson disease. JAMA Neurol. 81, 59–68 (2024).

    Article  PubMed  Google Scholar 

  2. Bartl, M. et al. Blood markers of inflammation, neurodegeneration, and cardiovascular risk in early Parkinson’s disease. Mov. Disord. 38, 68–81 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. El-Agnaf, O. M. et al. Detection of oligomeric forms of alpha-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. FASEB J. 20, 419–425 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Emamzadeh, F. N. Role of apolipoproteins and alpha-synuclein in Parkinson’s disease. J. Mol. Neurosci. 62, 344–355 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kowal, S. L., Dall, T. M., Chakrabarti, R., Storm, M. V. & Jain, A. The current and projected economic burden of Parkinson’s disease in the United States. Mov. Disord. 28, 311–318 (2013).

    Article  PubMed  Google Scholar 

  6. Varadi, C. Clinical features of Parkinson’s disease: the evolution of critical symptoms. Biology (Basel) 9, 103 (2020).

    CAS  PubMed  Google Scholar 

  7. Neikrug, A. B. et al. Parkinson’s disease and REM sleep behavior disorder result in increased non-motor symptoms. Sleep Med. 15, 959–966 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chelliah, S. S., Bhuvanendran, S., Magalingam, K. B., Kamarudin, M. N. A. & Radhakrishnan, A. K. Identification of blood-based biomarkers for diagnosis and prognosis of Parkinson’s disease: a systematic review of proteomics studies. Ageing Res. Rev. 73, 101514 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Hu, L. et al. Integrated metabolomics and proteomics analysis reveals plasma lipid metabolic disturbance in patients with Parkinson’s disease. Front. Mol. Neurosci. 13, 80 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Khosousi, S. et al. Complement system changes in blood in Parkinson’s disease and progressive supranuclear palsy/corticobasal syndrome. Parkinsonism Relat. Disord. 108, 105313 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Posavi, M. et al. Characterization of Parkinson’s disease using blood-based biomarkers: a multicohort proteomic analysis. PLoS Med. 16, e1002931 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abdi, I. Y. et al. Cross-sectional proteomic expression in Parkinson’s disease-related proteins in drug-naive patients vs healthy controls with longitudinal clinical follow-up. Neurobiol. Dis. 177, 105997 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Licker, V. et al. Proteomic analysis of human substantia nigra identifies novel candidates involved in Parkinson’s disease pathogenesis. Proteomics 14, 784–794 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Petyuk, V. A. et al. Proteomic profiling of the substantia nigra to identify determinants of Lewy body pathology and dopaminergic neuronal loss. J Proteome Res. 20, 2266–2282 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Downs, M., Sethi, M. K., Raghunathan, R., Layne, M. D. & Zaia, J. Matrisome changes in Parkinson’s disease. Anal. Bioanal. Chem. 414, 3005–3015 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Raghunathan, R., Hogan, J. D., Labadorf, A., Myers, R. H. & Zaia, J. A glycomics and proteomics study of aging and Parkinson’s disease in human brain. Sci. Rep. 10, 12804 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang, L. et al. An alpha-synuclein MRM assay with diagnostic potential for Parkinson’s disease and monitoring disease progression.Proteomics Clin. Appl. 11, 10.1002/prca.201700045 (2017).

    Article  PubMed Central  Google Scholar 

  18. Rotunno, M. S. et al. Cerebrospinal fluid proteomics implicates the granin family in Parkinson’s disease. Sci. Rep. 10, 2479 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, Y. et al. Phosphorylated alpha-synuclein in Parkinson’s disease. Sci. Transl. Med. 4, 121ra120 (2012).

    Article  Google Scholar 

  20. Walker, K. A. et al. Large-scale plasma proteomic analysis identifies proteins and pathways associated with dementia risk. Nat. Aging 1, 473–489 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sun, B. B. et al. Plasma proteomic associations with genetics and health in the UK Biobank. Nature 622, 329–338 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoshikawa, T., Nakamura, T. & Yanai, K. Histamine N-methyltransferase in the brain. Int. J. Mol. Sci. 20, 737 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiménez-Jiménez, F. J., Alonso-Navarro, H., García-Martín, E. & Agúndez, J. A. G. Thr105Ile (rs11558538) polymorphism in the histamine N-methyltransferase (HNMT) gene and risk for Parkinson disease: a PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore) 95, e4147 (2016).

    Article  PubMed  Google Scholar 

  24. Shan, L. et al. Alterations in the histaminergic system in the substantia nigra and striatum of Parkinson’s patients: a postmortem study. Neurobiol. Aging 33, 1488 (2012).

    Article  Google Scholar 

  25. Pang, Y. P., Zheng, X. E. & Weinshilboum, R. M. Theoretical 3D model of histamine N-methyltransferase: insights into the effects of a genetic polymorphism on enzymatic activity and thermal stability. Biochem. Biophys. Res. Commun. 287, 204–208 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Hou, L. et al. Integrin CD11b mediates locus coeruleus noradrenergic neurodegeneration in a mouse Parkinson’s disease model. J. Neuroinflammation 17, 148 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thimgan, M. S. et al. Cross-translational studies in human and Drosophila identify markers of sleep loss. PLoS One 8, e61016 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Allard, D. E. et al. Schwann cell-derived periostin promotes autoimmune peripheral polyneuropathy via macrophage recruitment. J. Clin. Invest. 128, 4727–4741 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sharabi, Y., Vatine, G. D. & Ashkenazi, A. Parkinson’s disease outside the brain: targeting the autonomic nervous system. Lancet Neurol. 20, 868–876 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Lindestam Arlehamn, C. S. et al. alpha-Synuclein-specific T cell reactivity is associated with preclinical and early Parkinson’s disease. Nat. Commun. 11, 1875 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Karayel, O. et al. Proteome profiling of cerebrospinal fluid reveals biomarker candidates for Parkinson’s disease. Cell Rep. Med. 3, 100661 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Halloway, S. et al. Association of neurofilament light with the development and severity of Parkinson disease. Neurology 98, e2185–e2193 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Verma, A. K. et al. Plasma prolidase activity and oxidative stress in patients with Parkinson’s disease. Parkinsons Dis. 2015, 598028 (2015).

    PubMed  PubMed Central  Google Scholar 

  34. Bartl, M. et al. Lysosomal and synaptic dysfunction markers in longitudinal cerebrospinal fluid of de novo Parkinson’s disease. NPJ Parkinsons Dis. 10, 102 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Margadant, C. & Sonnenberg, A. Integrin-TGF-beta crosstalk in fibrosis, cancer and wound healing. EMBO Rep. 11, 97–105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Henderson, N. C. & Sheppard, D. Integrin-mediated regulation of TGFbeta in fibrosis. Biochim. Biophys. Acta 1832, 891–896 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Henderson, N. C. et al. Targeting of ɑv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat. Med. 19, 1617–1624 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Zhong, L. et al. Runx2 activates hepatic stellate cells to promote liver fibrosis via transcriptionally regulating Itgav expression. Clin. Transl. Med. 13, e1316 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Terauchi, A. et al. The projection-specific signals that establish functionally segregated dopaminergic synapses. Cell 186, 3845–3861.e3824 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yun, S. P. et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat. Med. 24, 931–938 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Diniz, L. P. et al. α-synuclein oligomers enhance astrocyte-induced synapse formation through TGF-β1 signaling in a Parkinson’s disease model. J. Neurochem. 150, 138–157 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Monzani, E. et al. Dopamine, oxidative stress and protein-quinone modifications in Parkinson’s and other neurodegenerative diseases. Angew. Chem. Int. Ed. Engl. 58, 6512–6527 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Zhao, X., Xiao, W. Z., Pu, X. P. & Zhong, L. J. Proteome analysis of the sera from Chinese Parkinson’s disease patients. Neurosci. Lett. 479, 175–179 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Sinclair, E. et al. Metabolomics of sebum reveals lipid dysregulation in Parkinson’s disease. Nat. Commun. 12, 1592 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fanning, S., Selkoe, D. & Dettmer, U. Vesicle trafficking and lipid metabolism in synucleinopathy. Acta Neuropathol. 141, 491–510 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Tansey, M. G. et al. Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol. 22, 657–673 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Droby, A. et al. The interplay between structural and functional connectivity in early stage Parkinson’s disease patients. J. Neurol. Sci. 442, 120452 (2022).

    Article  PubMed  Google Scholar 

  48. Slingerland, S. et al. Cholinergic innervation topography in GBA-associated de novo Parkinson’s disease patients. Brain 147, 900–910 (2024).

    Article  PubMed  Google Scholar 

  49. Walker, K. A. et al. Proteomics analysis of plasma from middle-aged adults identifies protein markers of dementia risk in later life. Sci. Transl. Med. 15, eadf5681 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Deming, Y. et al. The MS4A gene cluster is a key modulator of soluble TREM2 and Alzheimer’s disease risk. Sci. Transl. Med. 11, eaau2291 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jin, J. et al. Association between epidermal growth factor receptor gene polymorphisms and susceptibility to Parkinson’s disease. Neurosci. Lett. 736, 135273 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Urso, D., Batzu, L., Logroscino, G., Ray Chaudhuri, K. & Pereira, J. B. Neurofilament light predicts worse nonmotor symptoms and depression in Parkinson’s disease. Neurobiol. Dis. 185, 106237 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, X. et al. The association of serum neurofilament light chains with early symptoms related to Parkinson’s disease: a cross-sectional study. J. Affect. Disord. 343, 144–152 (2023).

    Article  PubMed  Google Scholar 

  54. Diaz-Ortiz, M. E. et al. GPNMB confers risk for Parkinson’s disease through interaction with alpha-synuclein. Science 377, eabk0637 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Palmqvist, S. et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA 324, 772–781 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Williams, S. A. et al. Plasma protein patterns as comprehensive indicators of health. Nat. Med. 25, 1851–1857 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Oh, H. S. et al. Organ aging signatures in the plasma proteome track health and disease. Nature 624, 164–172 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Katz, D. H. et al. Proteomic profiling platforms head to head: Leveraging genetics and clinical traits to compare aptamer- and antibody-based methods. Sci. Adv. 8, eabm5164 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Collins, R. What makes UK Biobank special? Lancet 379, 1173–1174 (2012).

    Article  PubMed  Google Scholar 

  60. Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Eldjarn, G. H. et al. Large-scale plasma proteomics comparisons through genetics and disease associations. Nature 622, 348–358 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dhindsa, R. S. et al. Rare variant associations with plasma protein levels in the UK Biobank. Nature 622, 339–347 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wik, L. et al. Proximity extension assay in combination with next-generation sequencing for high-throughput proteome-wide analysis. Mol. Cell. Proteomics. 20, 100168 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gelb, D. J., Oliver, E. & Gilman, S. Diagnostic criteria for Parkinson disease. Arch. Neurol. 56, 33–39 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Zheng, Z., Lv, Y., Rong, S., Sun, T. & Chen, L. Physical frailty, genetic predisposition, and incident Parkinson disease. JAMA Neurol. 80, 455–461 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Simonet, C. et al. Assessment of risk factors and early presentations of Parkinson disease in primary care in a diverse UK population. JAMA Neurol. 79, 359–369 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wooten, G. F., Currie, L. J., Bovbjerg, V. E., Lee, J. K. & Patrie, J. Are men at greater risk for Parkinson’s disease than women? J. Neurol. Neurosurg. Psychiatry 75, 637–639 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Van Den Eeden, S. K. et al. Incidence of Parkinson’s disease: variation by age, gender, and race/ethnicity. Am. J. Epidemiol. 157, 1015–1022 (2003).

    Article  PubMed  Google Scholar 

  69. Najafi, F. et al. Association between socioeconomic status and Parkinson’s disease: findings from a large incident case-control study. BMJ Neurol. Open 5, e000386 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hu, G. et al. Body mass index and the risk of Parkinson disease. Neurology 67, 1955–1959 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Morens, D. M., Grandinetti, A., Reed, D., White, L. R. & Ross, G. W. Cigarette smoking and protection from Parkinson’s disease: false association or etiologic clue? Neurology 45, 1041–1051 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Zhang, D., Jiang, H. & Xie, J. Alcohol intake and risk of Parkinson’s disease: a meta-analysis of observational studies. Mov. Disord. 29, 819–822 (2014).

    Article  PubMed  Google Scholar 

  73. de Jong, F. A., Howlett, G. J. & Schreiber, G. Messenger RNA levels of plasma proteins following fasting. Br. J. Nutr. 59, 81–86 (1988).

    Article  PubMed  Google Scholar 

  74. Enroth, S., Hallmans, G., Grankvist, K. & Gyllensten, U. Effects of long-term storage time and original sampling month on biobank plasma protein concentrations. EBioMedicine 12, 309–314 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Milà-Alomà, M. et al. Plasma p-tau231 and p-tau217 as state markers of amyloid-β pathology in preclinical Alzheimer’s disease. Nat. Med. 28, 1797–1801 (2022).

    PubMed  PubMed Central  Google Scholar 

  77. Milà-Alomà, M. et al. Amyloid beta, tau, synaptic, neurodegeneration, and glial biomarkers in the preclinical stage of the Alzheimer’s continuum. Alzheimers Dement. 16, 1358–1371 (2020).

    Article  PubMed  Google Scholar 

  78. Mila-Aloma, M. et al. Plasma p-tau231 and p-tau217 as state markers of amyloid-beta pathology in preclinical Alzheimer’s disease. Nat. Med. 28, 1797–1801 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Guo, Y. et al. The dynamics of plasma biomarkers across the Alzheimer’s continuum. Alzheimers Res. Ther. 15, 31 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lehallier, B. et al. Undulating changes in human plasma proteome profiles across the lifespan. Nat. Med. 25, 1843–1850 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Piehl, N. et al. Cerebrospinal fluid immune dysregulation during healthy brain aging and cognitive impairment. Cell 185, 5028–5039 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schalkamp, A. K., Peall, K. J., Harrison, N. A. & Sandor, C. Wearable movement-tracking data identify Parkinson’s disease years before clinical diagnosis. Nat. Med. 29, 2048–2056 (2023).

    Article  CAS  PubMed  Google Scholar 

  83. Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).

    Article  PubMed  Google Scholar 

  84. Nalls, M. A. et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 18, 1091–1102 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife 7, e34408 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. LightGBM: a. highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems 30 (NIPS, 2017).

  87. Lundberg, S. & Lee, S. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30, 4765–4774 (2017).

    Google Scholar 

Download references

Acknowledgements

We thank all the participants and researchers from the UKB and PPMI. This study was supported by grants from the Science and Technology Innovation 2030 Major Projects (2022ZD0211600, J.-T.Y.), National Natural Science Foundation of China (92249305, J.-T.Y., 82472055 and 82071997, W.C., 82402381 and 82471940, J.Y.), National Key R&D Program of China (2023YFC3605400, W.C.), Research Start-up Fund of Huashan Hospital (2022QD002, J.-T.Y.), Excellence 2025 Talent Cultivation Program at Fudan University (3030277001, J.-T.Y.), Shanghai Pujiang Talent Program (23PJD006, J.Y.), the National Postdoctoral Program for Innovative Talents (BX20240073, Y.G.) and ZHANGJIANG LAB, Tianqiao and Chrissy Chen Institute, the State Key Laboratory of Neurobiology and Frontiers Center for Brain Science of Ministry of Education, Fudan University. PPMI is funded by the Michael J. Fox Foundation for Parkinson’s Research funding partners 4D Pharma, AbbVie, Acurex Therapeutics, Allergan, Amathus Therapeutics, ASAP, Avid Radiopharmaceuticals, Bial Biotech, Biogen, BioLegend, Bristol-Myers Squibb, Calico, Celgene, Dacapo Brain Science, Denali, The Edmond J. Safra Foundaiton, GE Healthcare, Genentech, GlaxoSmithKline, Golub Capital, Handl Therapeutics, Insitro, Janssen Neuroscience, Lilly, Lundbeck, Merck, Meso Scale Discovery, Neurocrine Biosciences, Pfizer, Piramal, Prevail, Roche, Sanofi Genzyme, Servier, Takeda, Teva, UCB, Verily and Voyager Therapeutics. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Contributions

J.-T.Y. conceptualized and designed the study and interpreted data. Y.-H.G., L.Z.M., Y.Z., J.Y. and Y.H. collected, analyzed and interpreted the data and drafted the paper. All authors revised the paper.

Corresponding authors

Correspondence to Wei Cheng or Jin-Tai Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was conducted following the Declaration of Helsinki. The UKB has research tissue bank approval from the North West Multi-Center Research Ethics Committee (11/NW/0382). Written informed consent was obtained from all participants. The present study was approved by the UKB under application number 19542.

Peer review

Peer review information

Nature Aging thanks Lucilla Parnetti, Yue Qi, Marcel Verbeek, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Baseline NPX levels of the 38 PD-associated proteins.

Violin plots display the baseline NPX levels (y axis) 38 PD-associated proteins compared between PD patients observed during follow-up and controls. The width of the violin reflects the density of the corresponding data. The box plots show the median (center line), the interquartile range (top and bottom edge), and the maximum and minimum (whiskers) of the NPX levels. The comparisons were conducted using two-sided wilcoxon test.

Extended Data Fig. 2 The expression of the PD-related proteins in the central nervous system (CNS) cell types.

Expression levels of the PD-associated-protein coding genes in different cell types of normal human brain. Brain snRNA-seq was retrieved from Garcia et al.1. 1. Garcia, F. J. et al. Single-cell dissection of the human brain vasculature. Nature 603, 893–899 (2022).

Extended Data Fig. 3 Functional enrichment analysis of cluster 1 and 2 proteins identified by protein trajectory clustering.

Top enriched GO biological pathways, GO molecular function pathways, and KEGG pathways were presented. The analyses were conducted using the clusterProfiler package (Hypergeometric test) and were adjusted for multiple testing using the Benjamini–Hochberg method. The shade of color corresponds to the magnitude of statistical significance (−log10 of P values).

Supplementary information

Supplementary Information

Supplementary Methods and Supplementary Figure 1.

Reporting Summary

Supplementary Tables 1–38.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, YH., Ma, LZ., Zhang, Y. et al. Large-scale proteomic analyses of incident Parkinson’s disease reveal new pathophysiological insights and potential biomarkers. Nat Aging 5, 642–657 (2025). https://doi.org/10.1038/s43587-025-00818-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-025-00818-0

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research