Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spin-symmetry-enforced solution of the many-body Schrödinger equation with a deep neural network

A preprint version of the article is available at arXiv.

Abstract

The integration of deep neural networks with the variational Monte Carlo (VMC) method has marked a substantial advancement in solving the Schrödinger equation. In this work we enforce spin symmetry in the neural-network-based VMC calculation using a modified optimization target. Our method is designed to solve for the ground state and multiple excited states with target spin symmetry at a low computational cost. It predicts accurate energies while maintaining the correct symmetry in strongly correlated systems, even in cases in which different spin states are nearly degenerate. Our approach also excels at spin–gap calculations, including the singlet–triplet gap in biradical systems, which is of high interest in photochemistry. Overall, this work establishes a robust framework for efficiently calculating various quantum states with specific spin symmetry in correlated systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Framework overview.
Fig. 2: Improved ground-state estimation.
Fig. 3: Improved excited-state calculation.
Fig. 4: The S–T gap for a collection of biradical systems.

Similar content being viewed by others

Data availability

The statistical estimations shown in the figures are provided in Supplementary Information. The dataset is available at Zenodo68. Source Data are provided with this paper.

Code availability

We open-source the implementation of our spin symmetry-enforced solution in the JaQMC repository on Github (https://github.com/bytedance/jaqmc). The sample code to reproduce the results in this work is also available on CodeOcean: https://codeocean.com/capsule/8440915/tree (ref. 69).

References

  1. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  MathSciNet  Google Scholar 

  2. Cohen, A. J., Mori-Sánchez, P. & Yang, W. Insights into current limitations of density functional theory. Science 321, 792–794 (2008).

    Article  Google Scholar 

  3. Dunlap, B. I. in Density Functional Methods in Chemistry 49–60 (Springer, 1991).

  4. Görling, A. Symmetry in density-functional theory. Phys. Rev. A 47, 2783–2799 (1993).

    Article  Google Scholar 

  5. Szalay, P. G., Müller, T., Gidofalvi, G., Lischka, H. & Shepard, R. Multiconfiguration self-consistent field and multireference configuration interaction methods and applications. Chem. Rev. 112, 108–181 (2012).

    Article  Google Scholar 

  6. Lischka, H. et al. Multireference approaches for excited states of molecules. Chem. Rev. 118, 7293–7361 (2018).

    Article  Google Scholar 

  7. Hermann, J. et al. Ab initio quantum chemistry with neural-network wavefunctions. Nat. Rev. Chem. 7, 692–709 (2023).

    Article  Google Scholar 

  8. Carleo, G. & Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 355, 602–606 (2017).

    Article  MathSciNet  Google Scholar 

  9. Han, J., Zhang, L. & Weinan, E. Solving many-electron Schrödinger equation using deep neural networks. J. Comput. Phys. 399, 108929 (2019).

    Article  MathSciNet  Google Scholar 

  10. Hermann, J., Schätzle, Z. & Noé, F. Deep-neural-network solution of the electronic Schrödinger equation. Nat. Chem. 12, 891–897 (2020).

    Article  Google Scholar 

  11. Pfau, D., Spencer, J. S., Matthews, A. G. D. G. & Foulkes, W. M. C. Ab initio solution of the many-electron Schrödinger equation with deep neural networks. Phys. Rev. Res. 2, 033429 (2020).

    Article  Google Scholar 

  12. Li, X., Li, Z. & Chen, J. Ab initio calculation of real solids via neural network ansatz. Nat. Commun. 13, 7895 (2022).

    Article  Google Scholar 

  13. Luo, D. & Clark, B. K. Backflow transformations via neural networks for quantum many-body wave functions. Phys. Rev. Lett. 122, 226401 (2019).

    Article  Google Scholar 

  14. Gerard, L., Scherbela, M., Marquetand, P. & Grohs, P. Gold-standard solutions to the Schrödinger equation using deep learning: how much physics do we need? In 36th Conference on Neural Information Processing Systems Vol. 35, 10282–10294 (NeurIPS, 2022).

  15. Gao, N. & Günnemann, S. Ab initio potential energy surfaces by pairing GNNs with neural wave functions. International Conference on Learning Representations (ICLR, 2022).

  16. Gao, N. & Günnemann, S. Generalizing neural wave functions. In International Conference on Machine Learning 10708–10726 (PMLR, 2023).

  17. von Glehn, I., Spencer, J. S. & Pfau, D. A self-attention ansatz for ab initio quantum chemistry. 11th International Conference on Learning Representations (ICLR, 2023).

  18. Lin, J., Goldshlager, G. & Lin, L. Explicitly antisymmetrized neural network layers for variational Monte Carlo simulation. J. Comput. Phys. 474, 111765 (2023).

    Article  MathSciNet  Google Scholar 

  19. Li, R. et al. A computational framework for neural network-based variational Monte Carlo with forward Laplacian. Nat. Mach. Intell. 6, 209–219 (2024).

    Article  Google Scholar 

  20. Fu, W., Ren, W. & Chen, J. Variance extrapolation method for neural-network variational Monte Carlo. Mach. Learn. Sci. Technol. 5, 015016 (2024).

    Article  Google Scholar 

  21. Entwistle, M. T., Schätzle, Z., Erdman, P. A., Hermann, J. & Noé, F. Electronic excited states in deep variational Monte Carlo. Nat. Commun. 14, 274 (2023).

    Article  Google Scholar 

  22. Pfau, D., Axelrod, S., Sutterud, H., von Glehn, I. & Spencer, J. S. Accurate computation of quantum excited states with neural networks. Science 385, eadn0137 (2024).

    Article  MathSciNet  Google Scholar 

  23. Andrews, J. S., Jayatilaka, D., Bone, R. G., Handy, N. C. & Amos, R. D. Spin contamination in single-determinant wavefunctions. Chem. Phys. Lett. 183, 423–431 (1991).

    Article  Google Scholar 

  24. Baker, J., Scheiner, A. & Andzelm, J. Spin contamination in density functional theory. Chem. Phys. Lett. 216, 380–388 (1993).

    Article  Google Scholar 

  25. Dirac, P. A. M. & Fowler, R. H. Quantum mechanics of many-electron systems. Proc. R. Soc. A 123, 714–733 (1929).

    Google Scholar 

  26. Löwdin, P.-O. Quantum theory of many-particle systems. i. Physical interpretations by means of density matrices, natural spin–orbitals, and convergence problems in the method of configurational interaction. Phys. Rev. 97, 1474–1489 (1955).

    Article  MathSciNet  Google Scholar 

  27. Wang, J., Becke, A. D. & Smith Jr, V. H. Evaluation of 〈S2〉 in restricted, unrestricted Hartree–Fock, and density functional based theories. J. Chem. Phys. 102, 3477–3480 (1995).

    Article  Google Scholar 

  28. Cramer, C. J. Essentials of Computational Chemistry: Theories and Models (John Wiley & Sons, 2013).

  29. Huang, C.-J., Filippi, C. & Umrigar, C. J. Spin contamination in quantum Monte Carlo wave functions. J. Chem. Phys. 108, 8838–8847 (1998).

    Article  Google Scholar 

  30. Szabó, P. B., Schätzle, Z., Entwistle, M. T. & Noé, F. An improved penalty-based excited-state variational Monte Carlo approach with deep-learning ansatzes. J. Chem. Theory Comput. 20, 7922–7935 (2024).

  31. Pathak, S., Busemeyer, B., Rodrigues, J. N. B. & Wagner, L. K. Excited states in variational Monte Carlo using a penalty method. J. Chem. Phys. 154, 034101 (2021).

    Article  Google Scholar 

  32. Wheeler, W. A., Kleiner, K. G. & Wagner, L. K. Ensemble variational Monte Carlo for optimization of correlated excited state wave functions. Electron. Struct. 6, 025001 (2024).

    Article  Google Scholar 

  33. Abe, M. Diradicals. Chem. Rev. 113, 7011–7088 (2013).

    Article  Google Scholar 

  34. Cogan, S., Haas, Y. & Zilberg, S. Intersystem crossing at singlet conical intersections. J. Photochem. Photobiol. A 190, 200–206 (2007).

    Article  Google Scholar 

  35. Gu, H. & Warde, C. Evaluation of organic light-emitting diodes as light sources for a compact optoelectronic integrated neural coprocessor. Appl. Optics 55, 8576–8581 (2016).

    Article  Google Scholar 

  36. Smith, M. B. & Michl, J. Singlet fission. Chem. Rev. 110, 6891–6936 (2010).

    Article  Google Scholar 

  37. Stoneburner, S. J. et al. Systematic design of active spaces for multi-reference calculations of singlet–triplet gaps of organic diradicals, with benchmarks against doubly electron-attached coupled-cluster data. J. Chem. Phys. 147, 164120 (2017).

  38. Manohar, P. U. & Krylov, A. I. A non-iterative perturbative triples correction for the spin-flipping and spin-conserving equation-of-motion coupled-cluster methods with single and double substitutions. J. Chem. Phys. 129, 194105 (2008).

    Article  Google Scholar 

  39. Bao, J. L., Sand, A., Gagliardi, L. & Truhlar, D. G. Correlated-participating-orbitals pair-density functional method and application to multiplet energy splittings of main-group divalent radicals. J. Chem. Theory Comput. 12, 4274–4283 (2016).

    Article  Google Scholar 

  40. Stoneburner, S. J., Truhlar, D. G. & Gagliardi, L. MC-PDFT can calculate singlet–triplet splittings of organic diradicals. J. Chem. Phys. 148, 064108 (2018).

  41. Yang, Y., Davidson, E. R. & Yang, W. Nature of ground and electronic excited states of higher acenes. Proc. Natl Acad. Sci. USA 113, E5098–E5107 (2016).

    Article  Google Scholar 

  42. Yang, Y., van Aggelen, H., Steinmann, S. N., Peng, D. & Yang, W. Benchmark tests and spin adaptation for the particle–particle random phase approximation. J. Chem. Phys. 139, 174110 (2013).

    Article  Google Scholar 

  43. van Aggelen, H., Yang, Y. & Yang, W. Exchange–correlation energy from pairing matrix fluctuation and the particle–particle random-phase approximation. Phys. Rev. A 88, 030501 (2013).

    Article  Google Scholar 

  44. Boyn, J.-N. & Mazziotti, D. A. Accurate singlet–triplet gaps in biradicals via the spin averaged anti-Hermitian contracted Schrödinger equation. J. Chem. Phys. 154, 134103 (2021).

    Article  Google Scholar 

  45. Lee, J., Malone, F. D. & Morales, M. A. Utilizing essential symmetry breaking in auxiliary-field quantum Monte Carlo: application to the spin gaps of the C36 fullerene and an iron porphyrin model complex. J. Chem. Theory Comput. 16, 3019–3027 (2020).

    Article  Google Scholar 

  46. Shee, J., Arthur, E. J., Zhang, S., Reichman, D. R. & Friesner, R. A. Singlet–triplet energy gaps of organic biradicals and polyacenes with auxiliary-field quantum Monte Carlo. J. Chem. Theory Comput. 15, 4924–4932 (2019).

    Article  Google Scholar 

  47. Li, X., Fan, C., Ren, W. & Chen, J. Fermionic neural network with effective core potential. Phys. Rev. Res. 4, 013021 (2022).

    Article  Google Scholar 

  48. Ren, W., Fu, W., Wu, X. & Chen, J. Towards the ground state of molecules via diffusion Monte Carlo on neural networks. Nat. Commun. 14, 1860 (2023).

    Article  Google Scholar 

  49. Wilson, M., Gao, N., Wudarski, F., Rieffel, E. & Tubman, N. M. Simulations of state-of-the-art fermionic neural network wave functions with diffusion Monte Carlo. Preprint at https://arxiv.org/abs/2103.12570 (2021).

  50. Curutchet, C. & Mennucci, B. Quantum chemical studies of light harvesting. Chem. Rev. 117, 294–343 (2016).

    Article  Google Scholar 

  51. Swart, M. & Gruden, M. Spinning around in transition-metal chemistry. Acc. Chem. Res. 49, 2690–2697 (2016).

    Article  Google Scholar 

  52. Vaswani, A. et al. Attention is all you need. In Advances in Neural Information Processing Systems (eds Guyon, I. et al.) Vol. 30, 6000–6010 (Curran Associates, 2017).

  53. Brown, T. B. et al. Language models are few-shot learners. In Proc. 34th International Conference on Neural Information Processing Systems 1877–1901 (NeurIPS, 2020).

  54. Feynman, R. P. & Cohen, M. Energy spectrum of the excitations in liquid helium. Phys. Rev. 102, 1189–1204 (1956).

    Article  Google Scholar 

  55. Taddei, M., Ruggeri, M., Moroni, S. & Holzmann, M. Iterative backflow renormalization procedure for many-body ground-state wave functions of strongly interacting normal fermi liquids. Phys. Rev. B 91, 115106 (2015).

    Article  Google Scholar 

  56. Ruggeri, M., Moroni, S. & Holzmann, M. Nonlinear network description for many-body quantum systems in continuous space. Phys. Rev. Lett. 120, 205302 (2018).

    Article  MathSciNet  Google Scholar 

  57. Martens, J. & Grosse, R. Optimizing neural networks with Kronecker-factored approximate curvature. In International Conference on Machine Learning 2408–2417 (PMLR, 2015).

  58. Feldt, J. & Filippi, C. Excited-State Calculations with Quantum Monte Carlo Ch. 8, 247–275 (John Wiley & Sons, 2020).

  59. Zimmerman, P. M., Toulouse, J., Zhang, Z., Musgrave, C. B. & Umrigar, C. J. Excited states of methylene from quantum Monte Carlo. J. Chem. Phys. 131, 124103 (2009).

    Article  Google Scholar 

  60. Shepard, S., Panadés-Barrueta, R. L., Moroni, S., Scemama, A. & Filippi, C. Double excitation energies from quantum Monte Carlo using state-specific energy optimization. J. Chem. Theory Comput. 18, 6722–6731 (2022).

    Article  Google Scholar 

  61. Choo, K., Carleo, G., Regnault, N. & Neupert, T. Symmetries and many-body excitations with neural-network quantum states. Phys. Rev. Lett. 121, 167204 (2018).

    Article  Google Scholar 

  62. Lu, Z. & Fu, W. Penalty and auxiliary wave function methods for electronic excitation in neural network variational Monte Carlo. Preprint at https://arxiv.org/abs/2311.17595 (2023).

  63. Otis, L., Craig, I. M. & Neuscamman, E. A hybrid approach to excited-state-specific variational Monte Carlo and doubly excited states. J. Chem. Phys. 153, 234105 (2020).

    Article  Google Scholar 

  64. Otis, L. & Neuscamman, E. A promising intersection of excited-state-specific methods from quantum chemistry and quantum Monte Carlo. WIREs Comput. Mol. Sci. 13, e1659 (2023).

    Article  Google Scholar 

  65. Zhao, L. & Neuscamman, E. Variational excitations in real solids: optical gaps and insights into many-body perturbation theory. Phys. Rev. Lett. 123, 036402 (2019).

    Article  Google Scholar 

  66. Jónsson, B., Bauer, B. & Carleo, G. Neural-network states for the classical simulation of quantum computing. Preprint at https://arxiv.org/abs/1808.05232 (2018).

  67. Medvidović, M. & Carleo, G. Classical variational simulation of the quantum approximate optimization algorithm. npj Quant. Inform. 7, 101 (2021).

    Article  Google Scholar 

  68. Li, Z. Dataset for spin-symmetry-enforced solution of the many-body Schrödinger equation with a deep neural network. Zenodo https://doi.org/10.5281/zenodo.14176986 (2024).

  69. Li, Z. et al. Supplymentary code for ‘symmetry enforced solution of the many-body Schrödinger equation with deep neural network’. Code Ocean https://doi.org/10.24433/CO.4978933.v1 (2024).

  70. Sansonetti, J. E. & Martin, W. C. Handbook of basic atomic spectroscopic data. J. Phys. Chem. Ref. Data 34, 1559–2259 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank H. Chen for helpful discussions. We also want to thank ByteDance Research Group for inspiration and encouragement. This work is directed and supported by H. Li and ByteDance Research. J. Chen is supported by the National Key R&D Program of China (grant no. 2021YFA1400500) and National Science Foundation of China (grant no. 12334003). Liwei Wang is supported by National Science Foundation of China (grant no. NSFC62276005).

Author information

Authors and Affiliations

Contributions

Z. Li, Z. Lu, R.L, L.W., J.C. and W.R. conceived the study. Z. Li, Z. Lu and R.L. proposed the algorithms. Z. Li, Z. Lu and X.L. performed implementations. Z. Li, Z. Lu, R.L. and X.W. performed simulations and analysis. Z. Li, L.W., J.C. and W.R. supervised the project. Z. Li, Z. Lu, R.L, X.L., X.W., L.W., J.C. and W.R. wrote the paper.

Corresponding authors

Correspondence to Zhe Li, Liwei Wang, Ji Chen or Weiluo Ren.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Computational Science thanks Xiao He, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Kaitlin McCardle, in collaboration with the Nature Computational Science team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and Tables 1–7.

Source data

Source Data Fig. 1

Raw data of time cost each step of different penalty terms.

Source Data Fig. 2

The zip file contains several files. Subfolder ‘subfigure_a’ contains two data files to plot Fig. 2a: ‘singlet_no_penalty.csv’ and ‘singelt_with_penalty.csv’, which correspond to the orange and red curves, respectively. Subfolder ‘subfigure_b’ contains three data files to plot Fig. 2b: 'overlap.csv', the raw data to compute the overlap between the contaminated state and the singlet and triplet states in Fig. 2b; 'singlet_nature_orb_occupy_num.csv', the occupation number of cc-pVTZ atomic orbitals for all of the occupied nature orbitals in the singlet state visualized in Fig. 2b; and 'triplet_nature_orb_occupy_num.csv', the occupation number of cc-pVTZ atomic orbitals for all of the occupied nature orbitals in the triplet state visualized in Fig. 2b.

Source Data Fig. 3

There are three subfolders/file under the root directory. Estimation values and error bars in Fig. 3a,c are derived by reblock analysis using the raw data from subfolders ‘subfigure_a’ and ‘subfigure_c’; ‘subfigure_d’ comprises the raw data to plot the curves in Fig. 3d.

Source Data Fig. 4

All raw data to derive the estimation values and error bars of our penalty method in Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Lu, Z., Li, R. et al. Spin-symmetry-enforced solution of the many-body Schrödinger equation with a deep neural network. Nat Comput Sci 4, 910–919 (2024). https://doi.org/10.1038/s43588-024-00730-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43588-024-00730-4

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics