Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Approaching coupled-cluster accuracy for molecular electronic structures with multi-task learning

An Author Correction to this article was published on 22 January 2025

This article has been updated

A preprint version of the article is available at arXiv.

Abstract

Machine learning plays an important role in quantum chemistry, providing fast-to-evaluate predictive models for various properties of molecules; however, most existing machine learning models for molecular electronic properties use density functional theory (DFT) databases as ground truth in training, and their prediction accuracy cannot surpass that of DFT. In this work we developed a unified machine learning method for electronic structures of organic molecules using the gold-standard CCSD(T) calculations as training data. Tested on hydrocarbon molecules, our model outperforms DFT with several widely used hybrid and double-hybrid functionals in terms of both computational cost and prediction accuracy of various quantum chemical properties. We apply the model to aromatic compounds and semiconducting polymers, evaluating both ground- and excited-state properties. The results demonstrate the model’s accuracy and generalization capability to complex systems that cannot be calculated using CCSD(T)-level methods due to scaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the MEHnet electronic structure workflow.
Fig. 2: Benchmark of the model performance on the testing dataset.
Fig. 3: Validation of the MEHnet’s predictions on gas phase aromatic hydrocarbon molecules, as compared with experimental results.
Fig. 4: MEHnet predictions for the electronic properties of semiconducting polymers.

Similar content being viewed by others

Data availability

Raw computational data files and the training and testing datasets are available with this manuscript through FigShare at https://doi.org/10.6084/m9.figshare.25762212 (ref. 52). Source Data are provided with this paper.

Code availability

The source code to generate the training dataset, train the MEHnet model, and apply the trained MEHnet model to hydrocarbon molecules has been deposited into a publicly available GitHub repository at https://github.com/htang113/Multi-task-electronic (ref. 53), and is also available in the Supplementary Software. The repository contains two branches: the branch v.1.6 is for all results of hydrocarbon molecules in this paper, and the branch v.2.0 is for the benchmark on the QM9 dataset.

Change history

References

  1. Carter, E. A. Challenges in modeling materials properties without experimental input. Science 321, 800–803 (2008).

    Article  MATH  Google Scholar 

  2. Kulik, H. J. et al. Roadmap on machine learning in electronic structure. Electron. Struct. 4, 023004 (2022).

    Article  MATH  Google Scholar 

  3. Dral, P. O. Quantum Chemistry in the Age of Machine Learning (Elsevier, 2022).

  4. Batzner, S. et al. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat. Commun. 13, 2453 (2022).

    Article  MATH  Google Scholar 

  5. Zhang, L., Han, J., Wang, H., Car, R. & Weinan, E. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120, 143001 (2018).

    Article  MATH  Google Scholar 

  6. Takamoto, S., Izumi, S. & Li, J. Teanet: universal neural network interatomic potential inspired by iterative electronic relaxations. Comput. Mater. Sci. 207, 111280 (2022).

    Article  Google Scholar 

  7. Takamoto, S., Okanohara, D., Li, Q. & Li, J. Towards universal neural network interatomic potential. J. Materiomics 9, 447–454 (2023).

    Article  MATH  Google Scholar 

  8. Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023).

    Article  MATH  Google Scholar 

  9. Chen, C. & Ong, S. P. A universal graph deep learning interatomic potential for the periodic table. Nat. Comput. Sci. 2, 718–728 (2022).

    Article  MATH  Google Scholar 

  10. Takamoto, S. et al. Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements. Nat. Commun. 13, 2991 (2022).

    Article  MATH  Google Scholar 

  11. Zheng, P., Zubatyuk, R., Wu, W., Isayev, O. & Dral, P. O. Artificial intelligence-enhanced quantum chemical method with broad applicability. Nat. Commun. 12, 7022 (2021).

    Article  Google Scholar 

  12. Kirkpatrick, J. et al. Pushing the frontiers of density functionals by solving the fractional electron problem. Science 374, 1385–1389 (2021).

    Article  MATH  Google Scholar 

  13. Bogojeski, M., Vogt-Maranto, L., Tuckerman, M. E., Müller, K.-R. & Burke, K. Quantum chemical accuracy from density functional approximations via machine learning. Nat. Commun. 11, 5223 (2020).

    Article  Google Scholar 

  14. Helgaker, T., Jorgensen, P. & Olsen, J. Molecular Electronic-Structure Theory (John Wiley & Sons, 2013).

  15. Schütt, K. T., Gastegger, M., Tkatchenko, A., Müller, K.-R. & Maurer, R. J. Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions. Nat. Commun. 10, 5024 (2019).

    Article  MATH  Google Scholar 

  16. Shao, X., Paetow, L., Tuckerman, M. E. & Pavanello, M. Machine learning electronic structure methods based on the one-electron reduced density matrix. Nat. Commun. 14, 6281 (2023).

    Article  Google Scholar 

  17. Feng, C., Xi, J., Zhang, Y., Jiang, B. & Zhou, Y. Accurate and interpretable dipole interaction model-based machine learning for molecular polarizability. J. Chem. Theory Comput. 19, 1207–1217 (2023).

    Article  MATH  Google Scholar 

  18. Fan, G., McSloy, A., Aradi, B., Yam, C.-Y. & Frauenheim, T. Obtaining electronic properties of molecules through combining density functional tight binding with machine learning. J. Phys. Chem. Lett. 13, 10132–10139 (2022).

    Article  Google Scholar 

  19. Cignoni, E. et al. Electronic excited states from physically constrained machine learning. ACS Central Sci. 10, 637–648 (2023).

    Article  MATH  Google Scholar 

  20. Dral, P. O. & Barbatti, M. Molecular excited states through a machine learning lens. Nat. Rev. Chem. 5, 388–405 (2021).

    Article  MATH  Google Scholar 

  21. Li, H. et al. Deep-learning density functional theory hamiltonian for efficient ab initio electronic-structure calculation. Nat. Comput. Sci. 2, 367–377 (2022).

    Article  MATH  Google Scholar 

  22. Gong, X. et al. General framework for E(3)-equivariant neural network representation of density functional theory hamiltonian. Nat. Commun. 14, 2848 (2023).

    Article  MATH  Google Scholar 

  23. Unke, O. et al. SE(3)-equivariant prediction of molecular wavefunctions and electronic densities. Advances in Neural Information Processing Systems 34, 14434–14447 (2021).

    Google Scholar 

  24. Mardirossian, N. & Head-Gordon, M. Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol. Phys. 115, 2315–2372 (2017).

    Article  MATH  Google Scholar 

  25. Bartlett, R. J. & Musiał, M. Coupled-cluster theory in quantum chemistry. Rev. Modern Phys. 79, 291 (2007).

    Article  MATH  Google Scholar 

  26. Geiger, M. & Smidt, T. e3nn: Euclidean neural networks. Preprint at https://arxiv.org/abs/2207.09453 (2022).

  27. Tirado-Rives, J. & Jorgensen, W. L. Performance of B3LYP density functional methods for a large set of organic molecules. J. Chem. Theory Comput. 4, 297–306 (2008).

    Article  MATH  Google Scholar 

  28. Mulliken, R. S. Electronic population analysis on LCAO–MO molecular wave functions. I. J. Chem. Phys. 23, 1833–1840 (1955).

    Article  MATH  Google Scholar 

  29. Mayer, I. Bond order and valence indices: a personal account. J. Comput. Chem. 28, 204–221 (2007).

    Article  MATH  Google Scholar 

  30. Caruana, R. Multitask learning. Mach. Learn. 28, 41–75 (1997).

    Article  MATH  Google Scholar 

  31. Kozuch, S. & Martin, J. M. Spin-component-scaled double hybrids: an extensive search for the best fifth-rung functionals blending DFT and perturbation theory. J. Comput. Chem. 34, 2327–2344 (2013).

    Article  MATH  Google Scholar 

  32. Karton, A. How reliable is DFT in predicting relative energies of polycyclic aromatic hydrocarbon isomers? Comparison of functionals from different rungs of jacob’s ladder. J. Comput. Chem. 38, 370–382 (2017).

    Article  Google Scholar 

  33. Goerigk, L. & Grimme, S. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys. Chem. Chem. Phys. 13, 6670–6688 (2011).

    Article  MATH  Google Scholar 

  34. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

  35. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  MATH  Google Scholar 

  36. Goerigk, L. & Grimme, S. Efficient and accurate double-hybrid-meta-GGA density functionals evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J. Chem. Theory Comput. 7, 291–309 (2011).

    Article  Google Scholar 

  37. Jablonnski, M. & Palusiak, M. Basis set and method dependence in atoms in molecules calculations. J. Phys. Chem. A 114, 2240–2244 (2010).

    Article  MATH  Google Scholar 

  38. Slayden, S. W. & Liebman, J. F. The energetics of aromatic hydrocarbons: an experimental thermochemical perspective. Chem. Rev. 101, 1541–1566 (2001).

    Article  MATH  Google Scholar 

  39. Heeger, A. J. Nobel lecture: Semiconducting and metallic polymers: the fourth generation of polymeric materials. Rev. Modern Phys. 73, 681 (2001).

    Article  MATH  Google Scholar 

  40. Grem, G., Leditzky, G., Ullrich, B. & Leising, G. Realization of a blue-light-emitting device using poly (p-phenylene). Adv. Mater. 4, 36–37 (1992).

    Article  Google Scholar 

  41. Otto, P., Piris, M., Martinez, A. & Ladik, J. Dynamic (hyper) polarizability calculations for polymers with linear and cyclic π-conjugated elementary cells. Synth. Metals 141, 277–280 (2004).

    Article  Google Scholar 

  42. Champagne, B. et al. Assessment of conventional density functional schemes for computing the polarizabilities and hyperpolarizabilities of conjugated oligomers: an ab initio investigation of polyacetylene chains. J. Chem. Phys. 109, 10489–10498 (1998).

    Article  MATH  Google Scholar 

  43. Ramakrishnan, R., Dral, P. O., Rupp, M. & Von Lilienfeld, O. A. Quantum chemistry structures and properties of 134 kilo molecules. Sci. Data 1, 140022 (2014).

    Article  Google Scholar 

  44. Szalay, P. G., Muller, T., Gidofalvi, G., Lischka, H. & Shepard, R. Multiconfiguration self-consistent field and multireference configuration interaction methods and applications. Chem. Rev. 112, 108–181 (2012).

    Article  Google Scholar 

  45. Dunning Jr, T. H. Gaussian basis sets for use in correlated molecular calculations. i. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989).

    Article  MATH  Google Scholar 

  46. Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 152, 224108 (2020).

    Article  Google Scholar 

  47. Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 33, 8822 (1986).

    Article  MATH  Google Scholar 

  48. Löwdin, P.-O. On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. J. Chem. Phys. 18, 365–375 (1950).

    Article  MATH  Google Scholar 

  49. Kesharwani, M. K., Brauer, B. & Martin, J. M. Frequency and zero-point vibrational energy scale factors for double-hybrid density functionals (and other selected methods): can anharmonic force fields be avoided? J. Phys. Chem. A 119, 1701–1714 (2015).

    Article  Google Scholar 

  50. Kim, S. et al. PubChem 2023 update. Nucl. Acids Res. 51, D1373–D1380 (2022).

    Article  Google Scholar 

  51. Krylov, A. I. Equation-of-motion coupled-cluster methods for open-shell and electronically excited species: the hitchhiker’s guide to Fock space. Annu. Rev. Phys. Chem. 59, 433–462 (2008).

    Article  MATH  Google Scholar 

  52. Tang, H. et al. Training and testing datasets in ‘Multi-task learning for molecular electronic structure approaching coupled-cluster accuracy’. (FigShare, 2024); https://doi.org/10.6084/m9.figshare.25762212

  53. htang113/Multi-task-electronic (GitHub, 2024); https://github.com/htang113/Multi-task-electronic

  54. Linstrom, P. & W.G. Mallard, E. NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, 2024).

  55. Wilson Jr, E. B. The normal modes and frequencies of vibration of the regular plane hexagon model of the benzene molecule. Phys. Rev. 45, 706 (1934).

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Honda Research Institute (HRI-USA). H.T. acknowledges support from the Mathworks Engineering Fellowship. The calculations in this work were performed in part on the Matlantis high-speed universal atomistic simulator, the Texas Advanced Computing Center (TACC), the MIT SuperCloud, and the National Energy Research Scientific Computing (NERSC).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussions of theory and results and to writing the manuscript. J.L. designed and guided the project and formulated the research goals. H.T., H.X., B.X. and W.H. designed and developed the computational method and code package, generated the quantum chemistry dataset, implemented the machine learningtraining and applications, and did data analysis and visualization. A.H. initiated the theme and formulated the research goals. Y.W., F.L. and P.S. provided important comments for the paper.

Corresponding authors

Correspondence to Haowei Xu or Ju Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Computational Science thanks Debashree Ghosh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Kaitlin McCardle, in collaboration with the Nature Computational Science team. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Tables 1 and 2, and Supplementary Sections 1–5.

Peer Review file

Supplementary Data

Relaxed structure models and example input files.

Supplementary Code

Python code package of MEHnet.

Source data

Source Data Fig. 1

Plain data files of Fig. 1c (Statistical source data for Fig. 1c).

Source Data Fig. 2

Plain data files of Fig. 2a–c (Statistical source data for Fig. 2a–c).

Source Data Fig. 3

Plain data files of Fig. 3a,b (Statistical source data for Fig. 3a,b).

Source Data Fig. 4

Plain data files for Fig. 4b,c (Statistical source data for Fig. 4b,c).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Xiao, B., He, W. et al. Approaching coupled-cluster accuracy for molecular electronic structures with multi-task learning. Nat Comput Sci 5, 144–154 (2025). https://doi.org/10.1038/s43588-024-00747-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43588-024-00747-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing