Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A Janus dual-atom catalyst for electrocatalytic oxygen reduction and evolution

Subjects

Abstract

Dual-atom catalysts, which exhibit high activity and atom utilization, show promise for sustainable energy conversion and storage technologies. However, the rational design and synthesis of a dual-atom catalyst with structurally homogeneous and flexible active sites remains challenging. In this work, we developed a strategy for the synthesis of a carbon-based catalyst with diatomic Fe–Co sites in which the Fe and Co atoms are coordinated to N and O atoms, respectively, and linked through bridging N and O atoms (FeCo–N3O3@C). The Janus FeCo–N3O3@C quaternary dimer is a stable and efficient bifunctional catalyst in the electrocatalytic oxygen reduction reaction (half-wave potential E1/2 = 0.936 V) and oxygen evolution reaction (potential E = 1.528 V at 10 mA cm−2). When assembled in a Zn–air battery, it exhibits superior performance over a benchmark Pt/C + RuO2 air cathode. A series of ex situ and in situ characterizations, combined with theoretical calculations, revealed that the bifunctional performance of the catalyst originates from the strong coupling of the Fe–N3 and Co–O3 moieties, which alters the d-orbital energy level of the metal atoms, optimizing the adsorption–desorption of oxygenated intermediates and improving the reaction kinetics of the oxygen reduction and evolution reactions. The in-depth insights gained into the fundamental mechanism of this dual-atom catalyst at the atomic and electronic level will facilitate the rational design of further highly efficient multifunctional catalysts with customized activities for specific reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A survey of atomically dispersed metal catalysts based on carbon substrates.
Fig. 2: Synthetic scheme and morphological characterization of the FeCo–N3O3@C catalyst.
Fig. 3: Structural characterization of the FeCo–N3O3@C catalyst.
Fig. 4: Catalytic performance of FeCo–N3O3@C in the ORR and OER.
Fig. 5: DFT calculations and in situ SR-FTIR and XANES measurements.
Fig. 6: Performances of ZABs based on FeCo–N3O3@C and Pt/C + RuO2.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available in the article and Supplementary Information. Source data are provided with this paper.

References

  1. Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    Article  CAS  Google Scholar 

  2. Zhao, J. et al. A heterogeneous iridium single-atom-site catalyst for highly regioselective carbenoid O–H bond insertion. Nat. Catal. 4, 523–531 (2021).

    Article  CAS  Google Scholar 

  3. Liang, X., Fu, N., Yao, S., Li, Z. & Li, Y. The progress and outlook of metal single-atom-site catalysis. J. Am. Chem. Soc. 144, 18155–18174 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Qin, R., Liu, K., Wu, Q. & Zheng, N. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 120, 11810–11899 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Gan, T. & Wang, D. Atomically dispersed materials: ideal catalysts in atomic era. Nano Res. 17, 18–38 (2024).

    Article  CAS  Google Scholar 

  6. Zheng, X., Li, B., Wang, Q., Wang, D. & Li, Y. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 15, 7806–7839 (2022).

    Article  CAS  Google Scholar 

  7. Hu, W. et al. Embedding atomic cobalt into graphene lattices to activate room-temperature ferromagnetism. Nat. Commun. 12, 1854 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, Y. et al. Isolating single and few atoms for enhanced catalysis. Adv. Mater. 34, 2201796 (2022).

    Article  CAS  Google Scholar 

  9. Li, R. & Wang, D. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 15, 6888–6923 (2022).

    Article  CAS  Google Scholar 

  10. Wang, Z. et al. Dual-atomic-site catalysts for molecular oxygen activation in heterogeneous thermo-/electro-catalysis. Angew. Chem. Int. Ed. 62, e202301483 (2023).

    Article  CAS  Google Scholar 

  11. Li, R. & Wang, D. Superiority of dual-atom catalysts in electrocatalysis: one step further than single-atom catalysts. Adv. Energy Mater. 12, 2103564 (2022).

    Article  CAS  Google Scholar 

  12. Shan, J. et al. Metal-metal interactions in correlated single-atom catalysts. Sci. Adv. 8, eabo0762 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, C. et al. Catalytic activity enhancement on alcohol dehydrogenation via directing reaction pathways from single- to double-atom catalysis. J. Am. Chem. Soc. 144, 4913–4924 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, S. et al. Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia. Nat. Commun. 14, 3634 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cui, T. et al. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem. Int. Ed. 61, e202115219 (2022).

    Article  CAS  Google Scholar 

  16. Wu, L., Guo, T. & Li, T. Data-driven high-throughput rational design of double-atom catalysts for oxygen evolution and reduction. Adv. Funct. Mater. 32, 2203439 (2022).

    Article  CAS  Google Scholar 

  17. Tang, T., Wang, Z. & Guan, J. Structural optimization of carbon-based diatomic catalysts towards advanced electrocatalysis. Coord. Chem. Rev. 492, 215288 (2023).

    Article  CAS  Google Scholar 

  18. Zhang, Y.-X. et al. General synthesis of a diatomic catalyst library via a macrocyclic precursor-mediated approach. J. Am. Chem. Soc. 145, 4819–4827 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Chen, S. et al. Dehydrogenation of ammonia borane by platinum-nickel dimers: regulation of heteroatom interspace boosts bifunctional synergetic catalysis. Angew. Chem. Int. Ed. 61, e202211919 (2022).

    Article  CAS  Google Scholar 

  20. Wang, Z. et al. Atomically dispersed Co2–N6 and Fe–N4 costructures boost oxygen reduction reaction in both alkaline and acidic media. Adv. Mater. 33, 2104718 (2021).

    Article  CAS  Google Scholar 

  21. Hao, Q. et al. Nickel dual-atom sites for electrochemical carbon dioxide reduction. Nat. Synth. 1, 719–728 (2022).

    Article  Google Scholar 

  22. Zhao, X. et al. Highly efficient electrochemical CO2 reduction on a precise homonuclear diatomic Fe–Fe catalyst. ACS Catal. 12, 11412–11420 (2022).

    Article  Google Scholar 

  23. Yuan, K. et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: nitrogen and phosphorus dual coordination. J. Am. Chem. Soc. 142, 2404–2412 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Han, G. et al. Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites. Nat. Commun. 12, 6335 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang, J. et al. Compressive strain modulation of single iron sites on helical carbon support boosts electrocatalytic oxygen reduction. Angew. Chem. Int. Ed. 60, 22722–22728 (2021).

    Article  CAS  Google Scholar 

  26. Li, J. et al. Metal–organic framework-derived graphene mesh: a robust scaffold for highly exposed Fe–N4 active sites toward an excellent oxygen reduction catalyst in acid media. J. Am. Chem. Soc. 144, 9280–9291 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Tian, H. et al. High durability of Fe–N–C single-atom catalysts with carbon vacancies toward the oxygen reduction reaction in alkaline media. Adv. Mater. 35, 2210714 (2023).

    Article  CAS  Google Scholar 

  28. Li, Y. et al. High-valence nickel single-atom catalysts coordinated to oxygen sites for extraordinarily activating oxygen evolution reaction. Adv. Sci. 7, 1903089 (2020).

    Article  CAS  Google Scholar 

  29. Ji, Q. et al. Lattice strain induced by linker scission in metal–organic framework nanosheets for oxygen evolution reaction. ACS Catal. 10, 5691–5697 (2020).

    Article  CAS  Google Scholar 

  30. Liu, K. et al. Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction. Nat. Commun. 13, 2075 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pei, Z. et al. Highly efficient electrocatalytic oxygen evolution over atomically dispersed synergistic Ni/Co dual sites. Angew. Chem. Int. Ed. 61, e202207537 (2022).

    Article  CAS  Google Scholar 

  32. Zhang, S. et al. Atomically dispersed bimetallic Fe–Co electrocatalysts for green production of ammonia. Nat. Sustain. 6, 169–179 (2023).

    Article  Google Scholar 

  33. Wang, Y. et al. Synergistic Fe−Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem. Int. Ed. 62, e202219191 (2023).

    Article  CAS  Google Scholar 

  34. Zhen, X. et al. The effect of proton irradiation on the properties of a graphene oxide paper. RSC Adv. 9, 30519–30525 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eissa, M. & El Rouby, W. Effect of alpha particle irradiations on the structural properties of graphene oxide. Int. J. Mod. Phys. B 32, 1850343 (2018).

    Article  CAS  Google Scholar 

  36. Hai, X. et al. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nat. Nanotechnol. 17, 174–181 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Han, L. et al. A single-atom library for guided monometallic and concentration-complex multimetallic designs. Nat. Mater. 21, 681–688 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, X. et al. Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe–Ni catalyst. Nat. Commun. 13, 5337 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, L. et al. Coordination of atomic Co–Pt coupling species at carbon defects as active sites for oxygen reduction reaction. J. Am. Chem. Soc. 140, 10757–10763 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Tan, H. et al. Engineering a local acid-like environment in alkaline medium for efficient hydrogen evolution reaction. Nat. Commun. 13, 2024 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, Y. et al. Electrosynthesis of chlorine from seawater-like solution through single-atom catalysts. Nat. Commun. 14, 2475 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pei, Z. et al. A polymeric hydrogel electrocatalyst for direct water oxidation. Nat. Commun. 14, 818 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Günter, T. et al. The SCR of NOx with NH3 examined by novel X-ray emission and X-ray absorption methods. Top. Catal. 59, 866–874 (2016).

    Article  Google Scholar 

  44. Du, Z. et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries. J. Am. Chem. Soc. 141, 3977–3985 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Chen, C. et al. An asymmetrically coordinated ZnCoFe hetero-trimetallic atom catalyst enhances the electrocatalytic oxygen reaction. Energy Environ. Sci. 17, 2298–2308 (2024).

    Article  CAS  Google Scholar 

  46. Kenmoe, S. et al. X-ray absorption near-edge structure (XANES) at the O K-edge of bulk Co3O4: experimental and theoretical studies. Nanomaterials 12, 921 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Frati, F., Hunault, M. O. J. Y. & de Groot, F. M. F. Oxygen K-edge X-ray absorption spectra. Chem. Rev. 120, 4056–4110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, R., Li, H. & McEwen, J.-S. Chemical sensitivity of valence-to-core X-ray emission spectroscopy due to the ligand and the oxidation state: a computational study on Cu-SSZ-13 with multiple H2O and NH3 adsorption. J. Phys. Chem. C 121, 25759–25767 (2017).

    Article  CAS  Google Scholar 

  49. Lancaster, K. M. et al. X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron-molybdenum cofactor. Science 334, 974–977 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mortensen, D. R., Seidler, G. T., Ditter, A. S. & Glatzel, P. Benchtop nonresonant X-ray emission spectroscopy: coming soon to laboratories and XAS beamlines near you? J. Phys. Conf. Ser. 712, 012036 (2016).

    Article  Google Scholar 

  51. Li, Z. et al. The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv. Mater. 30, 1803220 (2018).

    Article  Google Scholar 

  52. Xiao, M. et al. 3d-Orbital occupancy regulated Ir-Co atomic pair toward superior bifunctional oxygen electrocatalysis. ACS Catal. 11, 8837–8846 (2021).

    Article  CAS  Google Scholar 

  53. Zhang, B. et al. High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nat. Catal. 3, 985–992 (2020).

    Article  CAS  Google Scholar 

  54. Sun, K. et al. Co(CN)3 catalysts with well-defined coordination structure for the oxygen reduction reaction. Nat. Catal. 6, 1164–1173 (2023).

    Article  CAS  Google Scholar 

  55. Liu, M. et al. Ferredoxin-inspired design of S-synergized Fe–Fe dual-metal center catalysts for enhanced electrocatalytic oxygen reduction reaction. Adv. Mater. 36, 2309231 (2024).

    Article  CAS  Google Scholar 

  56. Du, Z. et al. Rapid surface reconstruction of pentlandite by high-spin state iron for efficient oxygen evolution reaction. Angew. Chem. Int. Ed. 63, e202317022 (2024).

    Article  CAS  Google Scholar 

  57. Cheng, W. et al. Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 4, 115–122 (2019).

    Article  CAS  Google Scholar 

  58. Ji, Q. et al. Operando identification of active species and intermediates on sulfide interfaced by Fe3O4 for ultrastable alkaline oxygen evolution at large current density. ACS Catal. 12, 4318–4326 (2022).

    Article  CAS  Google Scholar 

  59. Chen, Z. et al. Unraveling the origin of sulfur-doped Fe-N-C single-atom catalyst for enhanced oxygen reduction activity: effect of iron spin-state tuning. Angew. Chem. Int. Ed. 60, 25404–25410 (2021).

    Article  CAS  Google Scholar 

  60. Jiang, M. et al. Rationalization on high-loading iron and cobalt dual metal single atoms and mechanistic insight into the oxygen reduction reaction. Nano Energy 93, 106793 (2022).

    Article  CAS  Google Scholar 

  61. Tong, M. et al. Operando cooperated catalytic mechanism of atomically dispersed Cu−N4 and Zn−N4 for promoting oxygen reduction reaction. Angew. Chem. Int. Ed. 60, 14005–14012 (2021).

    Article  CAS  Google Scholar 

  62. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  63. Perdew, J. P., Burke, K. & Ernzerhof, M. Perdew, Burke, and Ernzerhof reply. Phys. Rev. Lett. 80, 891 (1998).

    Article  CAS  Google Scholar 

  64. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (grant nos. 2023YFF0716100 and 2021YFA1600800 to W.Y.), the National Natural Science Foundation of China (grant nos. 12275271 to C.W., 12305364 to Q.J., 22102167 to Y.Z. and 22325101 to D.W.), the Collaborative Innovation Program of Hefei Science Center, CAS (grant no. 2022HSC-CIP028 to H.T.), the Users with Excellence Program of Hefei Science Center, CAS (grant nos. 2020HSC-CIP013 to W.Y. and 2021HSC-UE002 to C.W.), the Key Program of Research and Development of Hefei Science Center, CAS (grant no. 2021HSC-KPRD002 to W.Y.), the Fundamental Research Funds for the Central Universities (grant no. WK 2310000103 to C.W.) and partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication and the USTC Instruments Center for Physical Science. The calculations were performed at the USTC Supercomputing Center and Ningbo Artificial Intelligence and High Performance Computing Center. We thank the BSRF, SSRF and beamlines MCD-A and MCD-B (Soochow Beamline for Energy Materials) at the NSRL for synchrotron beamtime.

Author information

Authors and Affiliations

Authors

Contributions

H.T., B.M.W., D.W. and W.Y. conceived and designed the project. H.T., D.W. and W.Y. analysed the results. H.T. and B.T. wrote the paper. B.T. and Q.J. performed the synthesis, characterization and electrochemical measurements. Y.Z. performed the DFT calculations. C.W. contributed to the XANES simulations. B.M. and F.S. performed the XES measurements. L.Z. and H.H. performed the zinc–air battery measurements. H.W. carried out the SEM and TEM characterizations. Z.Z., S.Y. and Q.J. performed the XAFS measurements. All of the authors discussed the results and reviewed the paper.

Corresponding authors

Correspondence to Hao Tan, Dingsheng Wang or Wensheng Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Gengtao Fu, Jinwoo Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–42 and Tables 1–7.

Supplementary data 1

Statistical source data for the figures in the Supplementary Information.

Source data

Source Data Fig. 2

Source data for FT-EXAFS spectra and the corresponding fitting curves.

Source Data Fig. 3

Source data for XANES and XES spectra and XANES calculations.

Source Data Fig. 4

Source data for electrochemical ORR and OER performance.

Source Data Fig. 5

Source data for DFT calculations, in situ SR-FTIR spectra and in situ XANES spectra.

Source Data Fig. 6

Source data for Zn−air battery performance.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, B., Zhou, Y., Ji, Q. et al. A Janus dual-atom catalyst for electrocatalytic oxygen reduction and evolution. Nat. Synth 3, 878–890 (2024). https://doi.org/10.1038/s44160-024-00545-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-024-00545-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing