Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epitaxial growth of quantum dots on van der Waals surfaces

Abstract

Zero-dimensional quantum dots (QDs), which have inherent quantum confinement effects and sharp discrete energy levels, are regarded as essential building blocks for quantum information devices. Current manufacturing strategies often exhibit limited adaptability in terms of compositional design or interface engineering. Here we propose a van der Waals (vdW) epitaxial strategy for growing intrinsic QDs by modulating the interfacial couplings between vdW surfaces and QDs. Versatile III–V (MX, M = Ga, In; X = As, Sb) and IV–VI (SnTe) QDs were fabricated without considering the lattice mismatch constraints, leading to QDs with more intrinsic features. We further demonstrated that the as-grown InSb QDs/MoS2 showed a broadened photoresponse in the near-infrared region due to the efficient charge-transfer channels at their vdW interfaces. This work reports a synthetic route to the all-in-solid epitaxy of QDs, which may expand the optoelectronic applications of QDs beyond those that are conventionally grown.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: vdW epitaxy of InSb QDs on MoS2.
Fig. 2: Theoretical simulation of the vdW epitaxial mechanism in the growth of InSb QDs on MoS2.
Fig. 3: VdW epitaxy of uniformly distributed InAs QDs on wafer-scale FL mica.
Fig. 4: Universal fabrication of III–V and IV–VI QDs on vdW surfaces.
Fig. 5: Photodetection of the InSb QDs/MoS2 heterostructure.

Similar content being viewed by others

Data availability

All of the source data supporting the findings of this study are available in the main text, Extended Data and Supplementary Information.

References

  1. Hong, H. et al. Giant enhancement of optical nonlinearity in two-dimensional materials by multiphoton-excitation resonance energy transfer from quantum dots. Nat. Photon. 15, 510–515 (2021).

    Article  CAS  Google Scholar 

  2. Wang, Y. et al. Near resonant and nonresonant third-order optical nonlinearities of colloidal InP/ZnS quantum dots. Appl. Phys. Lett. 102, 021917 (2013).

    Article  Google Scholar 

  3. Chen, S. et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photon. 10, 307–311 (2016).

    Article  Google Scholar 

  4. Park, Y.-S. et al. Colloidal quantum dot lasers. Nat. Rev. Mater. 6, 382–401 (2021).

    Article  CAS  Google Scholar 

  5. Whitworth, G., Dalmases, M., Taghipour, N. & Konstantatos, G. Solution-processed PbS quantum dot infrared laser with room-temperature tunable emission in the optical telecommunications window. Nat. Photon. 15, 738–742 (2021).

    Article  CAS  Google Scholar 

  6. Keuleyan, S., Lhuillier, E., Brajuskovic, V. & Guyot-Sionnest, P. Mid-infrared HgTe colloidal quantum dot photodetectors. Nat. Photon. 5, 489–493 (2011).

    Article  CAS  Google Scholar 

  7. Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. García de Arquer, F. P., Armin, A., Meredith, P. & Sargent, E. H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2, 1–17 (2017).

    Google Scholar 

  9. Lu, C.-Y. & Pan, J.-W. Quantum-dot single-photon sources for the quantum internet. Nat. Nanotech. 16, 1294–1296 (2021).

    Article  CAS  Google Scholar 

  10. Kandel, Y. P. et al. Adiabatic quantum state transfer in a semiconductor quantum-dot spin chain. Nat. Commun. 12, 2156 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kagan, C. R., Lifshitz, E., Sargent, E. H. & Talapin, D. V. Building devices from colloidal quantum dots. Science 353, aac5523 (2016).

    Article  PubMed  Google Scholar 

  12. Liu, M. et al. Colloidal quantum dot electronics. Nat. Electron. 4, 548–558 (2021).

    Article  Google Scholar 

  13. Liu, S. et al. Efficiently passivated PbSe quantum dot solids for infrared photovoltaics. ACS Nano 15, 3376–3386 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Böhm, M. L. et al. Lead telluride quantum dot solar cells displaying external quantum efficiencies exceeding 120%. Nano Lett. 15, 7987–7993 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Won, Y.-H. et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Lim, J., Park, Y.-S. & Klimov, V. I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 17, 42–49 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Livache, C. et al. A colloidal quantum dot infrared photodetector and its use for intraband detection. Nat. Commun. 10, 2125 (2019).

  18. Chen, B. et al. Low dark current high gain InAs quantum dot avalanche photodiodes monolithically grown on Si. ACS Photon. 7, 528–533 (2020).

    Article  CAS  Google Scholar 

  19. Liu, H. et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat. Photon. 5, 416–419 (2011).

    Article  CAS  Google Scholar 

  20. Huang, J. et al. Defect characterization of InAs/InGaAs quantum dot p-i-n photodetector grown on GaAs-on-V-grooved-Si substrate. ACS Photon. 6, 1100–1105 (2019).

    Article  CAS  Google Scholar 

  21. Holewa, P. et al. Thermal stability of emission from single InGaAs/GaAs quantum dots at the telecom O-band. Sci. Rep. 10, 21816 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Prieto, J., Armelles, G., Groenen, J. & Carles, R. Size and strain effects in the E1-like optical transitions of InAs/InP self-assembled quantum dot structures. Appl. Phys. Lett. 74, 99–101 (1999).

    Article  CAS  Google Scholar 

  23. Guanjie, Z. et al. Raman scattering of InAs quantum dots with different deposition thicknesses. J. Semicond. 27, 1012–1015 (2006).

    Google Scholar 

  24. Dong, J., Zhang, L., Dai, X. & Ding, F. The epitaxy of 2D materials growth. Nat. Commun. 11, 5862 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, L., Dong, J. & Ding, F. Strategies, status, and challenges in wafer scale single crystalline two-dimensional materials synthesis. Chem. Rev. 121, 6321–6372 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, C., Wang, L., Qi, J. & Liu, K. Designed growth of large‐size 2D single crystals. Adv. Mater. 32, 2000046 (2020).

    Article  CAS  Google Scholar 

  27. Chang, W.-H. et al. Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities. Phys. Rev. Lett. 96, 117401 (2006).

    Article  PubMed  Google Scholar 

  28. Yuan, Z. et al. Electrically driven single-photon source. Science 295, 102–105 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Uppu, R. et al. On-chip deterministic operation of quantum dots in dual-mode waveguides for a plug-and-play single-photon source. Nat. Commun. 11, 3782 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ibanez, J. et al. Strain relaxation in stacked InAs/GaAs quantum dots studied by Raman scattering. Appl. Phys. Lett. 83, 3069–3071 (2003).

    Article  CAS  Google Scholar 

  31. Künzel, H. & Ploog, K. The effect of As2 and As4 molecular beam species on photoluminescence of molecular beam epitaxially grown GaAs. Appl. Phys. Lett. 37, 416–418 (1980).

    Article  Google Scholar 

  32. Ma, H. et al. Enhanced hot carrier up‐conversion in graphene by quantum dot coating. Adv. Opt. Mater. 10, 2101563 (2022).

    Article  CAS  Google Scholar 

  33. Hu, C. et al. Synergistic effect of hybrid PbS quantum dots/2D‐WSe2 toward high performance and broadband phototransistors. Adv. Funct. Mater. 27, 1603605 (2017).

    Article  Google Scholar 

  34. Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotech. 7, 363–368 (2012).

    Article  CAS  Google Scholar 

  35. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  36. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  37. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  39. Sheppard, D., Terrell, R. & Henkelman, G. Optimization methods for finding minimum energy paths. J. Chem. Phys. 128, 134106 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grant numbers 62222408 (to S.Z.), 62125404 (to Z.W.), 12274404 (to S.Z.), 62375256 (to J.Y.), 52322205 (to C.L.), 52250398 (to C.L.) and 12274456 (to C.L.)), in part by the Youth Innovation Promotion Association of the Chinese Academy of Sciences (grant number 2022112 (to S.Z.)), the Beijing Natural Science Foundation (grant number Z220005 (to Z.W.)), the National Key Research and Development Program of China (grant numbers 2020YFB1506400 (to Z.W.) and 2022YFA1405600 (to C.L.)), the Strategic Priority Research Program of Chinese Academy of Sciences (grant number XDB43000000 (to Z.W.) and XDB0460000 (to H.-X.D.)), and the CAS Project for Young Scientists in Basic Research (grant number YSBR-026 (to Z.W.)).

Author information

Authors and Affiliations

Authors

Contributions

S.Z., Z.W., F.L. and C.L. supervised the project. K.X., L.L. and Z.Z. conducted the sample growth and characterizations. K.X. and Z.Z. wrote the article. C.Z. performed the theoretical calculations. J.Y., H.-X.D., J.Z., J.L. and K.L. revised the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Can Liu, Fengqi Liu, Zhongming Wei or Shenqiang Zhai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Chen Shang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Schematics of QDs grown by vdW epitaxy and coherent epitaxy.

a, The non-layered stable phase tends to reduce the surface energy, hence forming QDs with large aspect ratios on vdW substrates. b, Typical coherent epitaxy commonly requires a wetting layer to accumulate stress followed by strain release to form QDs.

Extended Data Fig. 2 InAs QDs grown on wafer-scale FL mica with highly uniform distribution of size and density.

a, Photograph of a 2-inch FL mica on which InAs QDs were grown. b, AFM images of InAs QDs grown on the 2-inch FL mica wafer at nine positions denoted by the red dots. The insets show the magnified views of InAs QDs at the centre square with 200 nm sides of each position (80 μm×80 μm).

Extended Data Fig. 3 Regulation of the QD size and density by substrate temperature and growth time.

a-f, InAs QDs grown on FL mica at 200 °C, 220 °C, 250 °C, 280 °C, 310 °C, and 340 °C for 1 min, leading to densities of 1.6×1011 cm−2, 2.5×1010 cm−2, 1.0×109 cm−2, 2.4×108 cm−2, 4.0×107 cm−2, and 2.5×107 cm−2, respectively. g-i, InAs QDs grown on FL mica at 280 °C for 30 s, 3 min, and 5 min, leading to average sizes of 10 nm, 20 nm, and 50 nm, respectively.

Extended Data Fig. 4 Epitaxial relationship between InAs QDs and FL mica.

a, Cross-sectional high-resolution transmission electron microscopy (HRTEM) image of a series of InAs QDs on FL mica. b-d, Three magnified views of InAs QDs with lattice configuration of InAs-(111) contacting the vdW surface of FL mica.

Extended Data Table 1 Thickness-dependent density and size of InSb QDs on MoS2

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Note 1.

Supplementary Data 1

Source data for Supplementary Fig. 1.

Supplementary Data 2

Source data for Supplementary Fig. 5.

Supplementary Data 3

Numerical experimental data for Supplementary Fig. 6.

Supplementary Data 4

Source data for Supplementary Fig. 8.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, K., Li, L., Zhou, Z. et al. Epitaxial growth of quantum dots on van der Waals surfaces. Nat. Synth 3, 1176–1183 (2024). https://doi.org/10.1038/s44160-024-00562-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-024-00562-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing