Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient ethylene electrosynthesis through C–O cleavage promoted by water dissociation

Abstract

Electrochemical reduction of carbon monoxide is a promising carbonate-free approach to produce ethylene using renewable electricity. However, the performance of this process suffers from low selectivity and energy efficiency. A priority has been to weaken water dissociation with the aim of inhibiting the competing hydrogen evolution reaction but when this path was examined by replacing H2O with D2O, a further-reduced selectivity toward ethylene was observed. Here we examine approaches to promote water adsorption and to decrease the energy barrier to the ensuing water dissociation step, which could promote C–O cleavage in *CHCOH hydrogenation to *CCH. We modified a copper catalyst with the strong electron acceptor 7,7,8,8-tetracyanoquinodimethane, which made the catalyst surface electron deficient. The observed ethylene Faradaic efficiency was 75%, 1.3 times greater than that of unmodified copper control catalysts. A full-cell energy efficiency of 32% was achieved for a total projected energy cost of 154 GJ t−1 in ethylene electrosynthesis in a membrane electrode assembly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Influence of water dissociation on the product distribution in the CORR.
Fig. 2: Characterization of Cu-100TCNQ catalyst.
Fig. 3: CORR performance of TCNQ-modified copper electrocatalyst.
Fig. 4: Mechanistic study of TCNQ modification of copper for C2H4 formation.

Similar content being viewed by others

Data availability

All necessary data supporting the findings of this study are available in the Article and its Supplementary Information.

References

  1. Yang, B. et al. Accelerating CO2 electroreduction to multicarbon products via synergistic electric-thermal field on copper nanoneedles. J. Am. Chem. Soc. 144, 3039–3049 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Liu, W. et al. Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays. Nat. Commun. 13, 1877 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xia, R., Overa, S. & Jiao, F. Emerging electrochemical processes to decarbonize the chemical industry. JACS Au 2, 1054–1070 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen, X. et al. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat. Catal. 4, 20–27 (2020).

    Article  Google Scholar 

  5. Li, P. et al. pd orbital hybridization induced by p-block metal-doped Cu promotes the formation of C2+ products in ampere-level CO2 electroreduction. J. Am. Chem. Soc. 145, 4675–4682 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Gu, J. et al. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat. Catal. 5, 268–276 (2022).

    Article  CAS  Google Scholar 

  7. Zhao, Y. et al. Conversion of CO2 to multicarbon products in strong acid by controlling the catalyst microenvironment. Nat. Synth. 2, 403–412 (2023).

    Google Scholar 

  8. She, X. et al. Pure-water-fed, electrocatalytic CO2 reduction to ethylene beyond 1,000 h stability at 10 A. Nat. Energy 9, 81–91 (2024).

    Article  CAS  Google Scholar 

  9. Rabinowitz, J. A. & Kanan, M. W. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat. Commun. 11, 5231 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jouny, M., Hutchings, G. S. & Jiao, F. Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nat. Catal. 2, 1062–1070 (2019).

    Article  CAS  Google Scholar 

  11. Zhu, P. et al. Direct and continuous generation of pure acetic acid solutions via electrocatalytic carbon monoxide reduction. Proc. Natl Acad. Sci. USA 118, e2010868118 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Ozden, A. et al. Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. Joule 5, 706–719 (2021).

    Article  CAS  Google Scholar 

  13. Wei, P. et al. Coverage-driven selectivity switch from ethylene to acetate in high-rate CO2/CO electrolysis. Nat. Nanotechnol. 18, 299–306 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, J. et al. Steering CO2 electroreduction pathway toward ethanol via surface-bounded hydroxyl species-induced noncovalent interaction. Proc. Natl Acad. Sci. USA 120, e2218987120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhu, H.-L. et al. A porous ππ stacking framework with dicopper(I) sites and adjacent proton relays for electroreduction of CO2 to C2+ products. J. Am. Chem. Soc. 144, 13319–13326 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Goyal, A. & Koper, M. T. M. The interrelated effect of cations and electrolyte pH on the hydrogen evolution reaction on gold electrodes in alkaline media. Angew. Chem. Int. Ed. 60, 13452–13462 (2021).

    Article  CAS  Google Scholar 

  17. Li, P. et al. Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt. Nat. Catal. 5, 900–911 (2022).

    Article  CAS  Google Scholar 

  18. Liu, E. et al. Unifying the hydrogen evolution and oxidation reactions kinetics in base by identifying the catalytic roles of hydroxyl-water-cation adducts. J. Am. Chem. Soc. 141, 3232–3239 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Kumar, S., Hoshino, M., Kerkeni, B., García, G. & Limão-Vieira, P. Isotope effect in D2O negative ion formation in electron transfer experiments: DO–D bond dissociation energy. J. Phys. Chem. Lett. 14, 5362–5369 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Andersson, K., Nikitin, A., Pettersson, L. G. M., Nilsson, A. & Ogasawara, H. Water dissociation on Ru(001): an activated process. Phys. Rev. Lett. 93, 196101 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Li, J. et al. Electrokinetic and in situ spectroscopic investigations of CO electrochemical reduction on copper. Nat. Commun. 12, 3264 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liang, Y. et al. Stabilizing copper sites in coordination polymers toward efficient electrochemical C–C coupling. Nat. Commun. 14, 474 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shao, F. et al. Surface water as an initial proton source for the electrochemical CO reduction reaction on copper surfaces. Angew. Chem. Int. Ed. 62, e202214210 (2023).

    Article  CAS  Google Scholar 

  24. Li, Y. et al. Interstitial boron-triggered electron-deficient Os aerogels for enhanced pH-universal hydrogen evolution. Nat. Commun. 13, 1143 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Strmcnik, D. et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5, 300–306 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Dong, Y. et al. Efficient water dissociation on confined ultrafine Pt via pyridinic N-enhanced heavy dπ interaction. Chem. Mater. 34, 8271–8279 (2022).

    Article  CAS  Google Scholar 

  27. Xie, Y. et al. Boosting water dissociation kinetics on Pt–Ni nanowires by N-induced orbital tuning. Adv. Mater. 31, 1807780 (2019).

    Article  Google Scholar 

  28. Blowey, P. J. et al. Alkali doping leads to charge-transfer salt formation in a two-dimensional metal–organic framework. ACS Nano 14, 7475–7483 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Otero, R., Miranda, R. & Gallego, J. M. A comparative computational study of the adsorption of TCNQ and F4-TCNQ on the coinage metal surfaces. ACS Omega 4, 16906–16915 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tseng, T.-C. et al. Charge-transfer-induced structural rearrangements at both sides of organic/metal interfaces. Nat. Chem. 2, 374–379 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Mahajan, M., Bhargava, S. K. & O’Mullane, A. P. Reusable surface confined semi-conducting metal-TCNQ and metal-TCNQF4 catalysts for electron transfer reactions. RSC Adv. 3, 4440–4446 (2013).

    Article  CAS  Google Scholar 

  32. Wang, N. et al. Boride-derived oxygen-evolution catalysts. Nat. Commun. 12, 6089 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Overa, S. et al. Enhancing acetate selectivity by coupling anodic oxidation to carbon monoxide electroreduction. Nat. Catal. 5, 738–745 (2022).

    Article  CAS  Google Scholar 

  34. Ding, P. et al. Elucidating the roles of Nafion/solvent formulations in copper-catalyzed CO2 electrolysis. ACS Catal. 13, 5336–5347 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gunathunge, C. M., Li, J., Li, X. & Waegele, M. M. Surface-adsorbed CO as an infrared probe of electrocatalytic interfaces. ACS Catal. 10, 11700–11711 (2020).

    Article  CAS  Google Scholar 

  36. Zhang, T., Yuan, B., Wang, W., He, J. & Xiang, X. Tailoring *H intermediate coverage on the CuAl2O4/CuO catalyst for enhanced electrocatalytic CO2 reduction to ethanol. Angew. Chem. Int. Ed. 135, e202302096 (2023).

    Article  Google Scholar 

  37. An, H. et al. Sub-second time-resolved surface-enhanced Raman spectroscopy reveals dynamic CO intermediates during electrochemical CO2 reduction on copper. Angew. Chem. Int. Ed. 60, 16576–16584 (2021).

    Article  CAS  Google Scholar 

  38. Patra, K. K. et al. Operando spectroscopic investigation of a boron-doped CuO catalyst and its role in selective electrochemical C–C coupling. ACS Appl. Energy Mater. 3, 11343–11349 (2020).

    Article  CAS  Google Scholar 

  39. Xiao, H., Cheng, T. & Goddard, W. A. Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 139, 130–136 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Li, F. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule-metal catalyst interfaces. Nat. Catal. 3, 75–82 (2020).

    Article  CAS  Google Scholar 

  41. Li, Z. et al. Room-temperature high-performance H2S sensor based on porous CuO nanosheets prepared by hydrothermal method. ACS Appl. Mater. Interfaces 8, 20962–20968 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Wang, X. et al. Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag–Ru–Cu catalyst. Nat. Energy 7, 170–176 (2022).

    Article  Google Scholar 

  43. Li, F. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005).

    Article  CAS  Google Scholar 

  45. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  46. Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. & Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992).

    Article  CAS  Google Scholar 

  47. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  48. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  49. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  50. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  51. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  52. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  53. Bader, R. F. W. A quantum theory of molecular structure and its applications. Chem. Rev. 91, 893–928 (1991).

    Article  CAS  Google Scholar 

  54. Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  CAS  Google Scholar 

  56. Nosé, S. Constant temperature molecular dynamics methods. Prog. Theor. Phys. Supp. 103, 1–46 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) and TotalEnergies SE (TotalEnergies Research & Technology Feluy (an affiliate of TotalEnergies SE, France)). J.Z. acknowledges support from NSFC (22250007, 22361162655). J.Z. and Fengwang Li are grateful to the International Partnership Program of the Chinese Academy of Sciences (123GJHZ2022101GC). W.N. acknowledges financial support from the Swiss National Science Foundation (SNSF) for a Postdoctoral Mobility Fellowship (202906).

Author information

Authors and Affiliations

Authors

Contributions

E.H.S, D.S., J.Z. and Fengwang Li supervised the project. Y. Liang synthesized the catalysts and performed all the electrochemical experiments. Feng Li carried out the DFT calculations, ab initio molecular dynamics simulation, and multiphysics simulation. P.O. and X.-Y.L. participated in the computational data analysis. R.K.M performed the cascade system modelling and calculated the energy cost. S.H. performed transmission electron microscopy, high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy mapping experiments. W.N. and S.P. assisted in electrochemical and operando Raman experiments. S.Z. conducted the operando XAS experiments. Y. Liu carried out the XPS experiments. Y.B. contributed to the CORR isotope experiments and data analysis. H.W. assisted in the X-ray diffraction experiments. N.W. provided the NiFe-B anode catalysts. Y. Liang, E.H.S., Fengwang Li and D.S. co-wrote and edited the manuscript. All authors discussed the results and assisted during the manuscript preparation.

Corresponding authors

Correspondence to Fengwang Li, Jie Zeng, David Sinton or Edward H. Sargent.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Yongji Gong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–40, Notes 1–4 and Tables 1–5.

Source data

Source Data Fig. 1

Source Data for Fig. 1.

Source Data Fig. 2

Source Data for Fig. 2.

Source Data Fig. 3

Source Data for Fig. 3.

Source Data Fig. 4

Source Data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Li, F., Miao, R.K. et al. Efficient ethylene electrosynthesis through C–O cleavage promoted by water dissociation. Nat. Synth 3, 1104–1112 (2024). https://doi.org/10.1038/s44160-024-00568-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-024-00568-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing