Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A selenium-mediated layer-by-layer synthetic strategy for multilayered multicomponent nanocrystals

Abstract

Ordered heterostructured nanocrystals with large compositional and morphological diversity are important for many applications. However, design of multicomponent nanostructures at the atomic level is difficult due to the elusive nucleation and growth processes in a solution-phase environment. Here we report a modular synthetic protocol that produces ordered multilayered nanostructures with small particle size by layer-by-layer growth. We introduce a selenium capping agent to hinder self-assembly, aggregation and phase segregation of nanostructures, while also sequencing the priority of metal atoms that migrate in the substrate lattice according to different metal–selenium bonding strengths, leading to a layer-by-layer growth for ordered nanostructures. The multilayered multicomponent nanocrystals are demonstrated in an alkaline polymer electrolyte fuel cell by using PtRuZn-SKE (SKE, selenium-mediated Kirkendall effect) as the anodic hydrogen oxidation reaction catalyst, which can deliver a high peak power density of 1.52 W cm−2 in H2–O2 and 1.12 W cm−2 in H2–air (CO2-free) while operating at 600 mA cm−2 for 100 h. This generalizable strategy provides a predictable synthetic pathway to complex nanocrystals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the controllable synthesis of platinum-based NCs with multilayer heterostructures.
Fig. 2: Synthesis and structural analyses of binary PtRu-SKE NCs.
Fig. 3: Analysis of multilayered platinum-based NC growth processes.
Fig. 4: DFT calculations for the mechanism of layer-by-layer formation.
Fig. 5: Electrocatalytic alkaline HOR measurements and full-cell performance.

Similar content being viewed by others

Data availability

Additional characterization data, experimental data, and theoretical calculation data are provided in the Supplementary Information. Source data are provided with this paper.

Code availability

The computational codes used in this work are available within the commercial VASP and the Gaussian 09 packages.

References

  1. Huang, X. et al. High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction. Science 348, 1230–1234 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Bu, L. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 354, 1410–1414 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Cao, L. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 565, 631–635 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Pang, C. et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 11, 795–801 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Shen, X., Kamath, A. & Guyot-Sionnest, P. Mid-infrared cascade intraband electroluminescence with HgSe–CdSe core–shell colloidal quantum dots. Nat. Photonics 17, 1042–1046 (2023).

    Article  CAS  Google Scholar 

  6. Nugroho, F. A. A. et al. Metal–polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detection. Nat. Mater. 18, 489–495 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Drake, G. A., Keating, L. P. & Shim, M. Design principles of colloidal nanorod heterostructures. Chem. Rev. 123, 3761–3789 (2022).

    Article  PubMed  Google Scholar 

  8. Yang, T. H., Shi, Y., Janssen, A. & Xia, Y. Surface capping agents and their roles in shape‐controlled synthesis of colloidal metal nanocrystals. Angew. Chem. Int. Ed. 59, 15378–15401 (2020).

    Article  CAS  Google Scholar 

  9. Sequeira, C. A. C. & Amaral, L. Role of Kirkendall effect in diffusion processes in solids. Trans. Nonferr. Metal. Soc. 24, 1–11 (2014).

    Article  CAS  Google Scholar 

  10. Feng, J. & Yin, Y. Self‐templating approaches to hollow nanostructures. Adv. Mater. 31, 1802349 (2018).

    Article  Google Scholar 

  11. Chee, S. W. et al. Interface-mediated Kirkendall effect and nanoscale void migration in bimetallic nanoparticles during interdiffusion. Nat. Commun. 10, 2831 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Trogadas, P., Ramani, V., Strasser, P., Fuller, T. F. & Coppens, M. O. Hierarchically structured nanomaterials for electrochemical energy conversion. Angew. Chem. Int. Ed. 55, 122–148 (2016).

    Article  CAS  Google Scholar 

  13. Ivanchenko, M., Carroll, A. L., Brothers, A. B. & Jing, H. Facile aqueous synthesis of hollow dual plasmonic hetero-nanostructures with tunable optical responses through nanoscale Kirkendall effects. Nanoscale Adv. 5, 88–95 (2023).

    Article  CAS  Google Scholar 

  14. Ivanchenko, M. & Jing, H. Smart design of noble metal–copper chalcogenide dual plasmonic heteronanoarchitectures for emerging applications: progress and prospects. Chem. Mater. 35, 4598–4620 (2023).

    Article  CAS  Google Scholar 

  15. Thompson, K. L., Katzbaer, R. R., Terrones, M. & Schaak, R. E. Formation and transformation of Cu2–xSe1–yTey nanoparticles synthesized by tellurium anion exchange of copper selenide. Inorg. Chem. 62, 4550–4557 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Tsunoyama, H., Ichikuni, N., Sakurai, H. & Tsukuda, T. Effect of electronic structures of Au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. J. Am. Chem. Soc. 131, 7086–7093 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Sun, Y. & Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Fan, H. J., Gösele, U. & Zacharias, M. Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review. Small 3, 1660–1671 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Zhan, C. et al. Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis. Nat. Commun. 12, 6261 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hu, X. et al. Platinum–lead–bismuth/platinum–bismuth core/shell nanoplate achieves complete dehydrogenation pathway for direct formic acid oxidation catalysis. J. Am. Chem. Soc. 145, 15109–15117 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Gallezot, P., Weber, R., Betta, R. A. D. & Boudart, M. Investigation by X-ray absorption spectroscopy of platinum clusters supported on zeolites. Z. Naturforsch. A 34, 40–42 (1979).

    Article  Google Scholar 

  22. Lytle, F. Determination of d-band occupancy in pure metals and supported catalysts by measurement of the LIII X-ray absorption threshold. J. Catal. 43, 376–379 (1976).

    Article  CAS  Google Scholar 

  23. Zhou, M. et al. Quantitative analysis of the reduction kinetics responsible for the one-pot synthesis of Pd–Pt bimetallic nanocrystals with different structures. J. Am. Chem. Soc. 138, 12263–12270 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Luty-Błocho, M., Pacławski, K., Wojnicki, M. & Fitzner, K. The kinetics of redox reaction of gold(III) chloride complex ions with l-ascorbic acid. Inorg. Chim. Acta 395, 189–196 (2013).

    Article  Google Scholar 

  25. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  26. Huang, J., Valenzano, L., Singh, T. V., Pandey, R. & Sant, G. Influence of (Al, Fe, Mg) impurities on triclinic Ca3SiO5: interpretations from DFT calculations. Cryst. Growth Des. 14, 2158–2171 (2014).

    Article  CAS  Google Scholar 

  27. Zhong, Q. et al. Strain-modulated seeded growth of highly branched black Au superparticles for efficient photothermal conversion. J. Am. Chem. Soc. 143, 20513–20523 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Schwindt, V. C. et al. Selenium adsorption at different coverages on Fe(100) and Fe(111): a DFT study. Appl. Surf. Sci. 315, 252–260 (2014).

    Article  CAS  Google Scholar 

  29. Lu, H.-J. et al. First-principles investigation on diffusion mechanism of alloying elements in dilute Zr alloys. Acta Mater. 154, 161–171 (2018).

    Article  CAS  Google Scholar 

  30. Van de Walle, C. G. & Neugebauer, J. First-principles calculations for defects and impurities: applications to III-nitrides. J. Appl. Phys. 95, 3851–3879 (2004).

    Article  Google Scholar 

  31. Tu, K.N. & Gusak, A.M. Kinetics in Nanoscale Materials (John Wiley, 2014).

  32. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  33. Tu, K. N. & Gösele, U. Hollow nanostructures based on the Kirkendall effect: design and stability considerations. Appl. Phys. Lett. 86, 093111 (2005).

    Article  Google Scholar 

  34. Shang, S.-L. et al. A comprehensive first-principles study of pure elements: vacancy formation and migration energies and self-diffusion coefficients. Acta Mater. 109, 128–141 (2016).

    Article  CAS  Google Scholar 

  35. Troparevsky, M. C., Morris, J. R., Kent, P. R. C., Lupini, A. R. & Stocks, G. M. Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5, 011041 (2015).

    Google Scholar 

  36. Qin, B. et al. A novel IrNi@PdIr/C core–shell electrocatalyst with enhanced activity and durability for the hydrogen oxidation reaction in alkaline anion exchange membrane fuel cells. Nanoscale 10, 4872–4881 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Miller, H. A. et al. A Pd/C–CeO2 anode catalyst for high‐performance platinum‐free anion exchange membrane fuel cells. Angew. Chem. Int. Ed. 55, 6004–6007 (2016).

    Article  CAS  Google Scholar 

  38. Omasta, T. J. et al. Beyond 1.0 W cm−2 performance without platinum: the beginning of a new era in anion exchange membrane fuel cells. J. Electrochem. Soc. 165, J3039–J3044 (2018).

    Article  CAS  Google Scholar 

  39. Wang, Y. et al. Pt–Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect? Energy Environ. Sci. 8, 177–181 (2015).

    Article  CAS  Google Scholar 

  40. Wang, T. et al. High-performance hydroxide exchange membrane fuel cells through optimization of relative humidity, backpressure and catalyst selection. J. Electrochem. Soc. 166, F3305–F3310 (2019).

    Article  CAS  Google Scholar 

  41. Xue, Y. et al. A highly-active, stable and low-cost platinum-free anode catalyst based on RuNi for hydroxide exchange membrane fuel cells. Nat. Commun. 11, 5651 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bellini, M. et al. Palladium–ceria catalysts with enhanced alkaline hydrogen oxidation activity for anion exchange membrane fuel cells. ACS Appl. Energy Mater. 2, 4999–5008 (2019).

    Article  CAS  Google Scholar 

  43. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Newville, M. IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 8, 322–324 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  46. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Frisch, M. J. et al. Gaussian 09 (Gaussian Inc., 2009).

  48. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  49. Hay, P. J. & Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299–310 (1985).

    Article  CAS  Google Scholar 

  50. Medasani, B., Haranczyk, M., Canning, A. & Asta, M. Vacancy formation energies in metals: a comparison of MetaGGA with LDA and GGA exchange–correlation functionals. Comp. Mater. Sci. 101, 96–107 (2015).

    Article  CAS  Google Scholar 

  51. Vitos, L., Ruban, A. V., Skriver, H. L. & Kollár, J. The surface energy of metals. Surf. Sci. 411, 186–202 (1998).

    Article  CAS  Google Scholar 

  52. Neumann, G. & Tuijn, C. Self-diffusion and Impurity Diffusion in Pure Metals Handbook of Experimental Data (Pergamon, 2009).

Download references

Acknowledgements

X.H. acknowledges support from the National Key R&D Program of China (2020YFB1505802), the Ministry of Science and Technology (2017YFA0208200), the National Natural Science Foundation of China (22025108, U21A20327, 22121001) and start-up fundings from Xiamen University. J.H. acknowledges support from the National Natural Science Foundation of China (52272256). C.H. acknowledges support from the Postdoctoral Science Foundation of China (2021M702731). J.X. acknowledges the grants from the Research Grants Council of the Hong Kong Special Administrative Region, China (grant number 21301324).

Author information

Authors and Affiliations

Authors

Contributions

X.H. supervised the project. C.H. carried out the materials synthesis, electrochemical experiments, electron microscopy experiments, data processing and analysis, and manuscript writing. J.H. performed the DFT calculations. J.X. revised the manuscript. Y.T. Y.T. contacted the spherical aberration transmission electron microscopy testing cooperation. Y.Z. and S.Z. performed the spherical aberration transmission electron microscopy experiments. R.R. and L.Z. conducted the membrane electrode assembly measurements. Q.K. and Z.H. performed the XAS measurements. L.L. analysed the XAS data. All authors discussed and commented on the manuscript.

Corresponding authors

Correspondence to Jijian Xu, Jian Huang, Yuanzhi Tan or Xiaoqing Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Hao Jing, J. R. Sambrano and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–6, Figs. 1–69, Tables 1–13 and References.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Zhang, Y., Ren, R. et al. A selenium-mediated layer-by-layer synthetic strategy for multilayered multicomponent nanocrystals. Nat. Synth 3, 1299–1309 (2024). https://doi.org/10.1038/s44160-024-00598-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-024-00598-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing