Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of chiral carbocycles via enantioselective β,γ-dehydrogenation

Abstract

Dehydrogenation of an alkyl group via C–H activation forms a vinyl unit, which can act as a versatile stepping stone for diverse late-stage structural modifications at two adjacent sp3 carbon centres. However, enantioselective dehydrogenation via C–H metalation remains a challenge. Here we describe the realization of palladium-catalysed enantioselective β,γ-dehydrogenation of cycloalkyl amides enabled by chiral oxazoline–pyridone ligands to afford a wide range of highly elaborated carbocycles with exceptional enantioselectivity (>99% e.e.). Notably, the resulting chiral β,γ-unsaturated carbocycles are difficult to access via an inverse electron demand Diels–Alder reaction. Through ligand control, a tandem dehydrogenation and C–H olefination sequence also led to the formation of chiral β-alkylidene-γ-lactams. Remarkably, this catalyst is also compatible with biologically important natural products, including diterpenes and pentacyclic triterpenes, where each enantiomer of our chiral ligand enables site-selective modification at four distinct sites within the E ring.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dehydrogenation of amides via β-C–H activation.
Fig. 2: Investigation of ligands for the β,γ-dehydrogenation of amides.
Fig. 3: Substrate scope for the enantioselective β,γ-dehydrogenation of amides.
Fig. 4: Site-selective β,γ-dehydrogenation of amides.
Fig. 5: Substrate scope for the enantioselective β,γ-dehydrogenation and vinyl C–H olefination of amides.
Fig. 6: Site-selective β,γ-dehydrogenation and vinyl C–H olefination of amides.
Fig. 7: Olefin scope for the enantioselective β,γ-dehydrogenation and vinyl C–H olefination of amides.
Fig. 8: Diverse functionalization of chiral dehydrogenated amides and γ-lactams.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the Article and its Supplementary Information. The crystallographic data for the structures reported in this study for compounds 2ac, 2ad, 3r and 5c have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under accession numbers 2332771 (2ac), 2300388 (2ad), 2304156 (3r) and 2302270 (5c). These data can be obtained free of charge from the CCDC via www.ccdc.cam.ac.uk/data_request/cif.

References

  1. Turlik, A., Chen, Y. & Newhouse, T. R. Dehydrogenation adjacent to carbonyls using palladium–allyl intermediates. Synlett 27, 331–336 (2016).

    CAS  Google Scholar 

  2. Sharpless, K. B., Lauer, R. F. & Teranishi, A. Y. Electrophilic and nucleophilic organoselenium reagents. New routes to α,β-unsaturated carbonyl compounds. J. Am. Chem. Soc. 95, 6137–6139 (1973).

    Article  CAS  Google Scholar 

  3. Diao, T., Pun, D. & Stahl, S. S. Aerobic dehydrogenation of cyclohexanone to cyclohexenone catalyzed by Pd(DMSO)2(TFA)2: evidence for ligand-controlled chemoselectivity. J. Am. Chem. Soc. 135, 8205–8212 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen, M. & Dong, G. Copper-catalyzed desaturation of lactones, lactams, and ketones under pH-neutral conditions. J. Am. Chem. Soc. 141, 14889–14897 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Teskey, C. J., Adler, P., Gonçalves, C. R. & Maulide, N. Chemoselective α,β‐dehydrogenation of saturated amides. Angew. Chem. Int. Ed. 58, 447–451 (2019).

    Article  CAS  Google Scholar 

  6. Chen, Y., Turlik, A. & Newhouse, T. R. Amide α,β-dehydrogenation using allyl–palladium catalysis and a hindered monodentate anilide. J. Am. Chem. Soc. 138, 1166–1169 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, Z., He, Z., Zhang, L. & Huang, Y. Iridium-catalyzed aerobic α,β-dehydrogenation of γ,δ-unsaturated amides and acids: activation of both α- and β-C–H bonds through an allyl–iridium intermediate. J. Am. Chem. Soc. 140, 735–740 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Gnaim, S., Vantourout, J. C., Serpier, F., Echeverria, P.-G. & Baran, P. S. Carbonyl desaturation: where does catalysis stand. ACS. Catal. 11, 883–892 (2021).

    Article  CAS  Google Scholar 

  9. Zhu, L., Zhang, L. & Luo, S. Catalytic desymmetrizing dehydrogenation of 4‐substituted cyclohexanones through enamine oxidation. Angew. Chem. Int. Ed. 57, 2253–2258 (2018).

    Article  CAS  Google Scholar 

  10. Wang, Z. et al. Ligand-controlled divergent dehydrogenative reactions of carboxylic acids via C–H activation. Science 374, 1281–1285 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sheng, T. et al. Synthesis of β,γ-unsaturated aliphatic acids via ligand-enabled dehydrogenation. J. Am. Chem. Soc. 145, 20951–20958 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Das, J. et al. Access to unsaturated bicyclic lactonesby overriding conventional C(sp3)–H site selectivity. Nat. Chem. 15, 1626–1635 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, G. et al. Ligand-accelerated enantioselective methylene C(sp3)–H bond activation. Science 353, 1023–1027 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shen, P.-X., Hu, L., Shao, Q., Hong, K. & Yu, J.-Q. Pd(II)-catalyzed enantioselective C(sp3)–H arylation of free carboxylic acids. J. Am. Chem. Soc. 140, 6545–6549 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu, L. et al. Pd(II)‐catalyzed enantioselective C(sp3)–H activation/cross‐coupling reactions of free carboxylic acids. Angew. Chem. Int. Ed. 58, 2134–2138 (2019).

    Article  CAS  Google Scholar 

  16. Zhang, T. et al. Enantioselective remote methylene C–H (hetero)arylation of cycloalkane carboxylic acids. Science 384, 793–798 (2024).

    Article  CAS  PubMed  Google Scholar 

  17. Jiang, X. & Wang, R. Recent developments in catalytic asymmetric inverse-electron-demand Diels–Alder reaction. Chem. Rev. 113, 5515–5546 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Corey, E. J. Catalytic enantioselective Diels–Alder reactions: methods, mechanistic fundamentals, pathways, and applications. Angew. Chem. Int. Ed. 41, 1650–1667 (2002).

    Article  CAS  Google Scholar 

  19. Kagan, H. B. & Riant, O. Catalytic asymmetric Diels Alder reactions. Chem. Rev. 92, 1007–1019 (1992).

    Article  CAS  Google Scholar 

  20. Mackay, E. G. & Sherburn, M. S. The Diels–Alder reaction in steroid synthesis. Synthesis 47, 1–21 (2014).

    Article  Google Scholar 

  21. Sheng, T. et al. One-step synthesis of β-alkylidene-γ-lactones via ligand-enabled β,γ-dehydrogenation of aliphatic acids. J. Am. Chem. Soc. 144, 12924–12933 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kang, G., Strassfeld, D. A., Sheng, T., Chen, C.-Y. & Yu, J.-Q. Transannular C–H functionalization of cycloalkane carboxylic acids. Nature 618, 519–525 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ammazzalorso, A., De Filippis, B., Giampietro, L. & Amoroso, R. N‐acylsulfonamides: synthetic routes and biological potential in medicinal chemistry. Chem. Biol. Drug Des. 90, 1094–1105 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Ballatore, C., Huryn, D. M. & Smith, A. B. III Carboxylic acid (bio)isosteres in drug design. ChemMedChem 8, 385–395 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meanwell, N. A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem. 54, 2529–2591 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Stansfield, I. et al. Development of carboxylic acid replacements in indole-N-acetamide inhibitors of hepatitis C virus NS5B polymerase. Bioorg. Med. Chem. Lett. 17, 5143–5149 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Wu, K. et al. Palladium(II)‐catalyzed C–H activation with bifunctional ligands: from curiosity to industrialization. Angew. Chem. Int. Ed. 63, e202400509 (2024).

    Article  CAS  Google Scholar 

  28. Lucas, E. L. et al. Palladium-catalyzed enantioselective β-C(sp3)–H activation reactions of aliphatic acids: a retrosynthetic surrogate for enolate alkylation and conjugate addition. Acc. Chem. Res. 55, 537–550 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. He, J., Shao, Q., Wu, Q. & Yu, J.-Q. Pd(II)-catalyzed enantioselective C(sp3)–H borylation. J. Am. Chem. Soc. 139, 3344–3347 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Zhuang, Z. & Yu, J.-Q. Pd(II)-catalyzed enantioselective γ-C(sp3)–H functionalizations of free cyclopropylmethylamines. J. Am. Chem. Soc. 142, 12015–12019 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu, Q.-F. et al. Formation of α-chiral centers by asymmetric β-C(sp3)–H arylation, alkenylation, and alkynylation. Science 355, 499–503 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mathur, S., Bulchandani, N., Parihar, S. & Shekhawat, G. S. Critical review on steviol glycosides: pharmacological, toxicological and therapeutic aspects of high potency zero caloric sweetener. Int. J. Pharmacol. 13, 916–928 (2017).

    Article  CAS  Google Scholar 

  33. Zhuang, Z. et al. Ligand‐enabled β‐C(sp3)–H lactamization of tosyl‐protected aliphatic amides using a practical oxidant. Angew. Chem. Int. Ed. 134, e202207354 (2022).

    Article  Google Scholar 

  34. Mehta, P. D., Sengar, N. P. S. & Pathak, A. K. 2-Azetidinone—a new profile of various pharmacological activities. Eur. J. Med. Chem. 45, 5541–5560 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Decuyper, L. et al. Antibacterial and β-lactamase inhibitory activity of monocyclic β-lactams. Med. Res. Rev. 38, 426–503 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Pierrat, O. A. et al. Monocyclic β-lactams are selective, mechanism-based inhibitors of rhomboid intramembrane proteases. ACS Chem. Biol. 6, 325–335 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge The Scripps Research Institute, the NIH (National Institute of General Medical Sciences grant R01GM084019) for financial support. J. Chen, B. Sanchez, J. Lee and Q. N. Wong from the Scripps Automated Synthesis Center are acknowledged for purification guidance. We acknowledge M. Gembicky, J. Bailey, E. Samolova and the UCSD Crystallography Facility for X-ray crystallographic analysis.

Author information

Authors and Affiliations

Authors

Contributions

J.-Q.Y. conceived the concept. T.S. discovered and developed the dehydrogenation reaction. T.S. developed the substrate scope, T.Z. developed the chiral oxazoline–pyridone ligands. T.S., Z.Z. and J.-Q.Y. wrote the paper. J.-Q.Y. directed the project.

Corresponding author

Correspondence to Jin-Quan Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, experimental procedures, additional reaction optimization, and characterization data.

Supplementary Data 1

Crystallographic data for compound 2ac, CCDC 2332771.

Supplementary Data 2

Crystallographic data for compound 2ad, CCDC 2300388.

Supplementary Data 3

Crystallographic data for compound 3r, CCDC 2304156.

Supplementary Data 4

Crystallographic data for compound 5c, CCDC 2302270.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, T., Zhang, T., Zhuang, Z. et al. Synthesis of chiral carbocycles via enantioselective β,γ-dehydrogenation. Nat. Synth 3, 1550–1559 (2024). https://doi.org/10.1038/s44160-024-00628-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-024-00628-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing