Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phase-switchable preparation of solution-processable WS2 mono- or bilayers

Abstract

Crystal phase plays a crucial role in determining the properties of two-dimensional (2D) transition metal dichalcogenides. Here we achieve phase-switchable preparation of 2D transition metal dichalcogenides using an electrochemical lithium-ion intercalation-based exfoliation strategy by controlling the discharge current density and cutoff voltage. We discover that a small discharge current density (0.005 A g−1, with a 0.9 V cutoff voltage) produces pure semiconducting 2H phase WS2 bilayers. In contrast, a large discharge current density (0.02 A g−1, with a 0.7 V cutoff voltage) leads to the dominant semimetallic 1T′ phase WS2 monolayers. The phase-switching mechanism was clarified through cryo-electron microscopy, annular dark-field scanning transmission electron microscopy, Raman, X-ray photoelectron spectroscopy, etc. The device (humidity sensor) application of produced 2D WS2 was then demonstrated, showing phase-dependent humidity-sensing performances confirming the potential of our produced 2D WS2 with switchable phase in device applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation and characterization of 2H- and 1T′-WS2 NSs.
Fig. 2: Characterization of intercalated WS2.
Fig. 3: Humidity-sensing performance.
Fig. 4: Sensor array for touchless localization interfaces.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article and its Supplementary Information. Source data are provided with this paper.

References

  1. Yang, R. J. et al. Intercalation in 2D materials and in situ studies. Nat. Rev. Chem. 8, 410–432 (2024).

    PubMed  CAS  Google Scholar 

  2. Mei, L. et al. Metallic 1T/1T' phase TMD nanosheets with enhanced chemisorption sites for ultrahigh-efficiency lead removal. Nat. Commun. 15, 7770 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    PubMed  Google Scholar 

  4. Li, Z. N. et al. Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium-sulfur batteries. Nat. Energy 8, 84–93 (2023).

    CAS  Google Scholar 

  5. Chen, W. S. et al. Two-dimensional quantum-sheet films with sub-1.2 nm channels for ultrahigh-rate electrochemical capacitance. Nat. Nanotechnol. 17, 153–158 (2022).

    PubMed  CAS  Google Scholar 

  6. Acerce, M. et al. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10, 313–318 (2015).

    PubMed  CAS  Google Scholar 

  7. Yu, Y. F. et al. High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nat. Chem. 10, 638–643 (2018).

    PubMed  CAS  Google Scholar 

  8. Voiry, D. et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013).

    PubMed  CAS  Google Scholar 

  9. Voiry, D. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013).

    PubMed  CAS  Google Scholar 

  10. Shi, Z. Y. et al. Phase-dependent growth of Pt on MoS2 for highly efficient H2 evolution. Nature 621, 300–305 (2023).

    PubMed  CAS  Google Scholar 

  11. Lai, Z. C. et al. Metastable 1T′-phase group VIB transition metal dichalcogenide crystals. Nat. Mater. 20, 1113–1120 (2021).

    PubMed  CAS  Google Scholar 

  12. Yang, R. J. et al. 2D transition metal dichalcogenides for photocatalysis. Angew. Chem. Int. Ed. 62, e202218016 (2023).

    CAS  Google Scholar 

  13. Wang, Q. H. et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    PubMed  CAS  Google Scholar 

  14. Sebastian, A. et al. Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat. Commun. 12, 693 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Radisavljevic, B. et al. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    PubMed  CAS  Google Scholar 

  16. Yang, R. et al. Synthesis of atomically thin sheets by the intercalation-based exfoliation of layered materials. Nat. Synth. 2, 101–118 (2023).

    CAS  Google Scholar 

  17. Pinilla, S. et al. Two-dimensional material inks. Nat. Rev. Mater. 7, 717–735 (2022).

    Google Scholar 

  18. Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

    PubMed  CAS  Google Scholar 

  19. Lin, Z. Y. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018).

    PubMed  CAS  Google Scholar 

  20. Li, J. et al. Printable two-dimensional superconducting monolayers. Nat. Mater. 20, 181–187 (2021).

    PubMed  CAS  Google Scholar 

  21. Liu, N. et al. Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation. ACS Nano 8, 6902–6910 (2014).

    PubMed  CAS  Google Scholar 

  22. Jeong, S. et al. Tandem intercalation strategy for single-layer nanosheets as an effective alternative to conventional exfoliation processes. Nat. Commun. 6, 5763 (2015).

    PubMed  CAS  Google Scholar 

  23. Eda, G. et al. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111–5116 (2011).

    PubMed  CAS  Google Scholar 

  24. Yang, R. J. et al. High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method. Nat. Protoc. 17, 358–377 (2022).

    PubMed  CAS  Google Scholar 

  25. Li, W. et al. Phase transitions in 2D materials. Nat. Rev. Mater. 6, 829–846 (2021).

    CAS  Google Scholar 

  26. Song, X. Y. et al. Synthesis of an aqueous, air-stable, superconducting 1T′-WS2 monolayer ink. Sci. Adv. 9, eadd616 (2023).

    Google Scholar 

  27. Chou, S. S. et al. Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide. Nat. Commun. 6, 8311 (2015).

    PubMed  CAS  Google Scholar 

  28. Wang, X. F. et al. Cryogenic electron microscopy for characterizing and diagnosing batteries. Joule 2, 2225–2234 (2018).

    CAS  Google Scholar 

  29. Fan, X. B. et al. Controlled exfoliation of MoS2 crystals into trilayer nanosheets. J. Am. Chem. Soc. 138, 5143–5149 (2016).

    PubMed  CAS  Google Scholar 

  30. Guo, P. et al. An all‐printed, fast‐response flexible humidity sensor based on Hexagonal‐WO3 nanowires for multifunctional applications. Adv. Mater. 35, 2304420 (2023).

    CAS  Google Scholar 

  31. Anichini, C. et al. Chemical sensing with 2D materials. Chem. Soc. Rev. 47, 4860–4908 (2018).

    PubMed  CAS  Google Scholar 

  32. He, H. N. et al. Anion vacancies regulating endows MoSSe with fast and stable potassium ion storage. ACS Nano 13, 11843–11852 (2019).

    PubMed  CAS  Google Scholar 

  33. Lopez-Sanchez, O. et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013).

    PubMed  CAS  Google Scholar 

  34. Akinwande, D. et al. Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).

    PubMed  CAS  Google Scholar 

  35. Chang, H. Y. et al. High-performance, highly bendable MoS2 transistors with high-K dielectrics for flexible low-power systems. ACS Nano 7, 5446–5452 (2013).

    PubMed  CAS  Google Scholar 

  36. Li, S. et al. Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management. Nat. Commun. 13, 5416 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Feng, J. et al. Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv. Mater. 24, 1969–1974 (2012).

    PubMed  CAS  Google Scholar 

  38. Zhao, J. et al. Highly sensitive MoS2 humidity sensors array for noncontact sensation. Adv. Mater. 29, 1702076 (2017).

    Google Scholar 

  39. Yu, X. G. et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575, 473–479 (2019).

    PubMed  CAS  Google Scholar 

  40. Kresse, G. et al. Ab-Initio molecular-dynamics for open-shell transition-metals. Phys. Rev. B 48, 13115–13118 (1993).

    CAS  Google Scholar 

  41. Perdew, J. P. et al. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    PubMed  CAS  Google Scholar 

  42. Grimme, S. et al. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Z.Zeng thanks the Young Collaborative Research Grant (project no. C1003-23Y) and General Research Fund (GRF) (project no. CityU11308923) support from the Research Grants Council of the Hong Kong Special Administrative Region, China, the Basic Research Project from Shenzhen Science and Technology Innovation Committee in Shenzhen, China (project no. JCYJ20210324134012034), and the Applied Research Grant of City University of Hong Kong (project no. 9667247) and Chow Sang Sang Group Research Fund of City University of Hong Kong (project no. 9229123). Z.Zeng also thanks the funding supported by the Seed Collaborative Research Fund Scheme of State Key Laboratory of Marine Pollution, which receives regular research funding from Innovation and Technology Commission (ITC) of the Hong Kong SAR Government. However, any opinions, findings, conclusions or recommendations expressed in this publication do not reflect the views of the Hong Kong SAR Government or the ITC. X.Y. thanks the support from Research Grants Council of the Hong Kong Special Administrative Region (grant no. RFS2324-1S03) and Shenzhen Science and Technology Innovation Commission (grant no. SGDX20220530111401011). M.G. acknowledges the support from Guangdong Fundamental Research Association (project no. 2022B1515120013), National Natural Science Foundation of China (project no. 52273225) and Guangdong scientific programme (contract no. 2019QN01L057). L.G. thanks the funding support from National Natural Science Foundation of China (project nos. 52250402, 51991344 and 52025025).

Author information

Authors and Affiliations

Authors

Contributions

Z. Zeng conceived and guided the project. L.M. designed and performed the synthesis and characterizations of all the materials. Z.G. and X.G.Y. performed the device fabrication and performance test. D.L., T.Y., H.H., J.Z., D.V. and Y.C. helped to analyse the results. Z. Zhang and M.D.G. carried out the cryo-electron microscopy test. M.S., X.L., Y.Z., B.H. and X.C.Z. conducted the DFT calculations. Q.Z. and L.G. performed the HAADF-STEM test of the samples. L.M., Z.G., R.Y., J.L., X.Y. and Z. Zeng drafted the paper. All authors checked the paper and agreed with its content.

Corresponding authors

Correspondence to M. Danny Gu, Ju Li, Xinge Yu or Zhiyuan Zeng.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Peer review

Peer review information

Nature Synthesis thanks Qiaoliang Bao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–47 and Tables 1 and 2.

Source data

Source Data Fig. 1

Unprocessed characterization data for 2H and 1T′-WS2.

Source Data Fig. 3

Unprocessed humidity sensor performance data for 2H and 1T′-WS2.

Source Data Fig. 4

Unprocessed humidity sensor array performance data for 2H-WS2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, L., Gao, Z., Yang, R. et al. Phase-switchable preparation of solution-processable WS2 mono- or bilayers. Nat. Synth 4, 303–313 (2025). https://doi.org/10.1038/s44160-024-00679-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-024-00679-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing