Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Kinetic Wulff-shaped heteroepitaxy of phase-pure 2D perovskite heterostructures with deterministic slab thickness

Abstract

The kinetic Wulff shape, determined by the crystal structure and growth rates of different crystal facets, is ubiquitous in classical crystal growth. However, its utilization for heterostructure integration remains largely unexplored. Here we report the discovery of kinetic Wulff-shaped heteroepitaxial growth in halide perovskites, which enables the realization of well-defined phase-pure 2D halide perovskite epitaxial heterostructures with deterministic slab thickness (n = 1–3). This approach allows modulation of the interfacial lattice mismatch from 0% to >11%. Two-___domain and complex heterostructures synthesized using this approach have well-defined chemical compositions and electronic structures that may enable the development of ultranarrow domains (less than the de Broglie wavelength of carriers) for solution-processed lateral quantum wells and superlattices. Finally, devices based on these heterostructures demonstrate substantial rectification ratios and reliable switching behaviours under optical or electrical inputs. This study presents the universality of kinetic Wulff-shaped epitaxy in achieving 2D halide perovskite epitaxial heterostructures with high phase purity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Kinetic Wulff-shaped heteroepitaxial growth of 2D halide perovskite epitaxial heterostructures.
Fig. 2: Spatially resolved characterizations and phase purity of 2D halide perovskite epitaxial heterostructures with tunable slab thickness.
Fig. 3: 2D halide perovskite complex heterostructures.
Fig. 4: Electrical rectification and photo- and electrical switches using single-crystalline 2D halide perovskite heterostructures.

Similar content being viewed by others

Data availability

The X-ray crystallographic coordinates for structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC 2376612 for (3T)2PbI4, CCDC 2376613 for (3T)2MAPb2I7, CCDC 2376614 for (3T)2SnI4, CCDC 2376615 for (3T)2MASn2I7, CCDC 2376616 for (3T)2PbCl4 and CCDC 2376617 for (3T)2PbBr4. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. The additional data that substantiate the study’s findings and contribute to the assessment of the paper’s conclusions can be accessed within the Article and its Supplementary Information. Source data are provided with this paper.

References

  1. Artyukhov, V. I., Liu, Y. & Yakobson, B. I. Equilibrium at the edge and atomistic mechanisms of graphene growth. Proc. Natl Acad. Sci. USA 109, 15136–15140 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Nishinaga, T. Handbook of Crystal Growth: Fundamentals (Elsevier, 2014).

  3. Markov, I. Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy (World Scientific, 2017).

  4. Vlassiouk, I. V. et al. Evolutionary selection growth of two-dimensional materials on polycrystalline substrates. Nat. Mater. 17, 318–322 (2018).

    PubMed  CAS  Google Scholar 

  5. Wang, Y., Shi, Y., Xin, G., Lian, J. & Shi, J. Two-dimensional van der Waals epitaxy kinetics in a three-dimensional perovskite halide. Cryst. Growth Des. 15, 4741–4749 (2015).

    CAS  Google Scholar 

  6. Gao, M. et al. The making of a reconfigurable semiconductor with a soft ionic lattice. Matter 4, 3874–3896 (2021).

    Google Scholar 

  7. Jena, A. K., Kulkarni, A. & Miyasaka, T. Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119, 3036–3103 (2019).

    PubMed  CAS  Google Scholar 

  8. Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015).

    PubMed  CAS  Google Scholar 

  9. Wei, W. et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photonics 11, 315–321 (2017).

    CAS  Google Scholar 

  10. Ji, R. et al. Perovskite phase heterojunction solar cells. Nat. Energy 7, 1170–1179 (2022).

    CAS  Google Scholar 

  11. Lei, Y. et al. Perovskite superlattices with efficient carrier dynamics. Nature 608, 317–323 (2022).

    PubMed  CAS  Google Scholar 

  12. Lai, M. et al. Intrinsic anion diffusivity in lead halide perovskites is facilitated by a soft lattice. Proc. Natl Acad. Sci. USA 115, 11929–11934 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Pan, D. et al. Visualization and studies of ion-diffusion kinetics in cesium lead bromide perovskite nanowires. Nano Lett. 18, 1807–1813 (2018).

    PubMed  CAS  Google Scholar 

  14. Akriti et al. Layer-by-layer anionic diffusion in two-dimensional halide perovskite vertical heterostructures. Nat. Nanotechnol. 16, 584–591 (2021).

    PubMed  CAS  Google Scholar 

  15. Saparov, B. & Mitzi, D. B. Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116, 4558–4596 (2016).

    PubMed  CAS  Google Scholar 

  16. Gao, Y. et al. Molecular engineering of organic–inorganic hybrid perovskites quantum wells. Nat. Chem. 11, 1151–1157 (2019).

    PubMed  CAS  Google Scholar 

  17. Smith, I. C., Hoke, E. T., Solis‐Ibarra, D., McGehee, M. D. & Karunadasa, H. I. A layered hybrid perovskite solar‐cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 53, 11232–11235 (2014).

    CAS  Google Scholar 

  18. Stoumpos, C. C. et al. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016).

    CAS  Google Scholar 

  19. Leng, K. et al. Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nat. Mater. 17, 908–914 (2018).

    PubMed  CAS  Google Scholar 

  20. Pan, D. et al. Deterministic fabrication of arbitrary vertical heterostructures of two-dimensional Ruddlesden–Popper halide perovskites. Nat. Nanotechnol. 16, 159–165 (2020).

    PubMed  Google Scholar 

  21. Liang, C. et al. Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films. Nat. Energy 6, 38–45 (2020).

    Google Scholar 

  22. Sidhik, S. et al. High-phase purity two-dimensional perovskites with 17.3% efficiency enabled by interface engineering of hole transport layer. Cell Rep. Phys. Sci. 2, 100601 (2021).

    CAS  Google Scholar 

  23. Lee, J.-W. et al. 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nat. Commun. 9, 3021 (2018).

    PubMed  PubMed Central  Google Scholar 

  24. Shi, E. et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 580, 614–620 (2020).

    PubMed  CAS  Google Scholar 

  25. Lei, Y. et al. A fabrication process for flexible single-crystal perovskite devices. Nature 583, 790–795 (2020).

    PubMed  CAS  Google Scholar 

  26. Zhang, L. et al. Thickness-controlled wafer-scale single-crystalline MAPbBr3 films epitaxially grown on CsPbBr3 substrates by the droplet-evaporated crystallization method. ACS Appl. Mater. Interfaces 12, 39834–39840 (2020).

    PubMed  CAS  Google Scholar 

  27. Zhang, Z. et al. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 357, 788–792 (2017).

    PubMed  CAS  Google Scholar 

  28. Sahoo, P. K., Memaran, S., Xin, Y., Balicas, L. & Gutiérrez, H. R. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 553, 63–67 (2018).

    PubMed  CAS  Google Scholar 

  29. Xie, S. et al. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science 359, 1131–1136 (2018).

    PubMed  CAS  Google Scholar 

  30. Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

    PubMed  CAS  Google Scholar 

  31. Gao, Q., Sahin, H., Kang, J. & Wei, S.-H. Origin of anomalous band-gap bowing in two-dimensional tin-lead mixed perovskite alloys. Phys. Rev. B 104, 064204 (2021).

    CAS  Google Scholar 

  32. Burton, W., Cabrera, N. & Frank, F. The growth of crystals and the equilibrium structure of their surfaces. Philos. Trans. Royal Soc. A 243, 299–358 (1951).

    Google Scholar 

  33. Dong, J., Ding, D., Jin, C., Liu, Y. & Ding, F. Edge reconstruction-dependent growth kinetics of MoS2. ACS Nano 17, 127–136 (2022).

    PubMed  Google Scholar 

  34. Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    PubMed  CAS  Google Scholar 

  35. Cheng, K. III–V Compound Semiconductors and Devices: An Introduction to Fundamentals (Springer, 2020).

  36. Park, J. Y. et al. Thickness control of organic semiconductor-incorporated perovskites. Nat. Chem. 15, 1745–1753 (2023).

    PubMed  CAS  Google Scholar 

  37. Makino, T. Analytical formulas for the optical gain of quantum wells. IEEE J. Quant. Electron. 32, 493–501 (1996).

    CAS  Google Scholar 

  38. Kelly, M. Quantum semiconductor devices. Sci. Progress 72, 99–116 (1988).

    CAS  Google Scholar 

  39. Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 2628 (2014).

    Google Scholar 

  40. Frisenda, R. et al. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 47, 53–68 (2018).

    PubMed  CAS  Google Scholar 

  41. Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    CAS  Google Scholar 

  42. Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).

    PubMed  CAS  Google Scholar 

  43. Schulman, D. S., Arnold, A. J. & Das, S. Contact engineering for 2D materials and devices. Chem. Soc. Rev. 47, 3037–3058 (2018).

    PubMed  CAS  Google Scholar 

  44. Passarelli, J. V. et al. Enhanced out-of-plane conductivity and photovoltaic performance in n = 1 layered perovskites through organic cation design. J. Am. Chem. Soc. 140, 7313–7323 (2018).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Zhu and B. Pentice for helpful discussions. E.S. acknowledges the support from Research Center for Industries of the Future at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., National Natural Science Foundation of China (grant no. 52272164), and the technical support from both the Instrumentation and Service Center for Molecular Science and the Instrumentation and Service Center for Physical Science at Westlake University. L.D. acknowledges the support from US Department of Energy, Office of Basic Energy Sciences under award number DE-SC0022082. J.D. acknowledges the support from National Natural Science Foundation of China (no. 22173109) and the CAS Project for Young Scientists in Basic Research (no. YSBR-053). Y.Y. acknowledges the support from the National Natural Science Foundation of China (52222311). The TEM characterizations were supported by the Center for high-resolution Electron Microscopy (ChEM) at ShanghaiTech University.

Author information

Authors and Affiliations

Contributions

E.S. conceived the idea. M.X. and T.W. synthesized the 2D perovskite materials and heterostructures. T.W. performed device fabrication and measurements. J.D. performed phase-field simulation. Y. Lu and Y.Y. performed TEM characterization and data analysis. Y. Li, B.L., H.S., Y.G., Y. Liu and L.D. participated in data analysis and discussion. M.X., T.W. and E.S. wrote the manuscript. All authors read and revised the manuscript.

Corresponding authors

Correspondence to Jichen Dong, Letian Dou or Enzheng Shi.

Ethics declarations

Competing interests

E.S., M.X. and T.W. are applying for a patent based on the findings in this work. The other authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Jin-Wook Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussions, Figs. 1–30 and Tables 1–5.

Supplementary Data 1

The cif file of (3T)2PbCl4.

Supplementary Data 2

The cif file of (3T)2PbBr4.

Supplementary Data 3

The cif file of (3T)2PbI4.

Supplementary Data 4

The cif file of (3T)2MAPb2I7.

Supplementary Data 5

The cif file of (3T)2SnI4.

Supplementary Data 6

The cif file of (3T)2MASn2I7.

Source data

Source Data Fig. 1

The source data for Fig. 1g.

Source Data Fig. 2

The source data for Fig. 2 panels a (right), b (right), c (right), d (bottom), e (bottom), f (bottom) and g.

Source Data Fig. 3

The source data for Fig. 4c–e.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, M., Wang, T., Lu, Y. et al. Kinetic Wulff-shaped heteroepitaxy of phase-pure 2D perovskite heterostructures with deterministic slab thickness. Nat. Synth 4, 380–390 (2025). https://doi.org/10.1038/s44160-024-00692-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-024-00692-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing