Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Anxious–depressive symptoms and sleep disturbances across the Alzheimer disease spectrum

Abstract

Patients with Alzheimer disease (AD) often experience neuropsychiatric symptoms, particularly anxious–depressive symptoms and sleep disturbances. These symptoms are associated with various factors related to AD, including amyloid-β and tau pathology, neurodegeneration, and cognitive decline, at different stages of the disease. However, it remains unclear whether anxious–depressive symptoms and sleep disturbances are merely symptoms or contribute as risk factors in the development and progression of AD. Consequently, there is a pressing need for a timely and informed discussion regarding these disturbances in AD. Here we discuss the most recent developments in understanding the etiology of anxious–depressive symptoms and sleep disturbances in AD, with a focus on how these symptoms interact with AD biomarkers to influence cognitive decline. Furthermore, we propose models of connections between anxious–depressive symptoms and/or sleep disturbances, AD biomarkers and cognition, aiming to inspire potential treatment plans for addressing these symptoms and exploring their impact on AD pathology and cognitive decline.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ADS-facilitated AD progression model.
Fig. 2: SD-facilitated AD progression model.
Fig. 3: Temporal progression model.

Similar content being viewed by others

References

  1. Jack, C. J. et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14, 535–562 (2018).

    Article  PubMed  Google Scholar 

  2. Yu, M., Sporns, O. & Saykin, A. J. The human connectome in Alzheimer disease—relationship to biomarkers and genetics. Nat. Rev. Neurol. 17, 545–563 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jack, C. R. et al. Revised criteria for diagnosis and staging of Alzheimer’s disease: Alzheimer’s Association Workgroup. Alzheimers Dement. 20, 5143–5169 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cerejeira, J., Lagarto, L. & Mukaetova-Ladinska, E. B. Behavioral and psychological symptoms of dementia. Front. Neurol. 3, 73 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kantarci, K. et al. MRI and MRS predictors of mild cognitive impairment in a population-based sample. Neurology 81, 126–133 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ismail, Z. et al. Mild behavioral impairment and subjective cognitive decline predict cognitive and functional decline. J. Alzheimers Dis. 80, 459–469 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ruthirakuhan, M., Ismail, Z., Herrmann, N., Gallagher, D. & Lanctôt, K. L. Mild behavioral impairment is associated with progression to Alzheimer’s disease: a clinicopathological study. Alzheimers Dement. 18, 2199–2208 (2022).

    Article  PubMed  Google Scholar 

  8. Geda, Y. E. et al. Baseline neuropsychiatric symptoms and the risk of incident mild cognitive impairment: a population-based study. Am. J. Psychiatry 171, 572–581 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Donovan, N. J. et al. Subjective cognitive concerns and neuropsychiatric predictors of progression to the early clinical stages of Alzheimer disease. Am. J. Geriatr. Psychiatry 22, 1642–1651 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gill, S. et al. Using machine learning to predict dementia from neuropsychiatric symptom and neuroimaging data. J. Alzheimers Dis. 75, 277–288 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Peters, M. E. et al. Neuropsychiatric symptoms as risk factors for progression from CIND to dementia: the Cache County Study. Am. J. Geriatr. Psychiatry 21, 1116–1124 (2013).

    Article  PubMed  Google Scholar 

  12. Rosenberg, P. B. et al. The association of neuropsychiatric symptoms in MCI with incident dementia and Alzheimer disease. Am. J. Geriatr. Psychiatry 21, 685–695 (2013).

    Article  PubMed  Google Scholar 

  13. Rosenberg, P. B. et al. Neuropsychiatric symptoms in MCI subtypes: the importance of executive dysfunction. Int. J. Geriatr. Psychiatry 26, 364–372 (2011).

    Article  PubMed  Google Scholar 

  14. Chen, Y., Dang, M. & Zhang, Z. Brain mechanisms underlying neuropsychiatric symptoms in Alzheimer’s disease: a systematic review of symptom-general and –specific lesion patterns. Mol. Neurodegener. https://doi.org/10.1186/s13024-021-00456-1 (2021).

  15. Liew, T. M. Subjective cognitive decline, anxiety symptoms, and the risk of mild cognitive impairment and dementia. Alzheimers Res. Ther. 12, 107 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wise, E. A., Rosenberg, P. B., Lyketsos, C. G. & Leoutsakos, J. M. Time course of neuropsychiatric symptoms and cognitive diagnosis in National Alzheimer’s Coordinating Centers volunteers. Alzheimers Dement. 11, 333–339 (2019).

    Google Scholar 

  17. Singh-Manoux, A. et al. Trajectories of depressive symptoms before diagnosis of dementia: a 28-year follow-up study. JAMA Psychiatry 74, 712–718 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mander, B. A., Winer, J. R., Jagust, W. J. & Walker, M. P. Sleep: a novel mechanistic pathway, biomarker, and treatment target in the pathology of Alzheimer’s disease? Trends Neurosci. 39, 552–566 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang, Y. et al. Sleep in Alzheimer’s disease: a systematic review and meta-analysis of polysomnographic findings. Transl. Psychiatry. 12, 136 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Krell-Roesch, J. et al. Cortical β-amyloid burden, neuropsychiatric symptoms, and cognitive status: the Mayo Clinic Study of Aging. Transl. Psychiatry 9, 123 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Brendel, M. et al. Depressive symptoms accelerate cognitive decline in amyloid-positive MCI patients. Eur. J. Nucl. Med. Mol. Imaging 42, 716–724 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Krell-Roesch, J. et al. Association of cortical and subcortical β-amyloid with standardized measures of depressive and anxiety symptoms in adults without dementia. J. Neuropsychiatry Clin. Neurosci. 33, 64–71 (2021).

    Article  PubMed  Google Scholar 

  23. Johansson, M. et al. Apathy and anxiety are early markers of Alzheimer’s disease. Neurobiol. Aging 85, 74–82 (2020).

    Article  PubMed  Google Scholar 

  24. Pichet Binette, A. et al. Amyloid and tau pathology associations with personality traits, neuropsychiatric symptoms, and cognitive lifestyle in the preclinical phases of sporadic and autosomal dominant Alzheimer’s disease. Biol. Psychiatry 89, 776–785 (2021).

    Article  PubMed  Google Scholar 

  25. Perin, S. et al. Amyloid burden and incident depressive symptoms in preclinical Alzheimer’s disease. J. Affect. Disord. 229, 269–274 (2018).

    Article  PubMed  Google Scholar 

  26. Babulal, G. M. et al. Mood changes in cognitively normal older adults are linked to Alzheimer disease biomarker levels. Am. J. Geriatr. Psychiatry 24, 1095–1104 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Donovan, N. J. et al. Longitudinal association of amyloid beta and anxious–depressive symptoms in cognitively normal older adults. Am. J. Psychiatry. 175, 530–537 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Harrington, K. D. et al. Amyloid burden and incident depressive symptoms in cognitively normal older adults. Int. J. Geriatr. Psychiatry 32, 455–463 (2017).

    Article  PubMed  Google Scholar 

  29. Munro, C. E. et al. Change in depressive symptoms and longitudinal regional amyloid accumulation in unimpaired older adults. JAMA Netw. Open 7, e2427248 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Moon, B. et al. Depressive symptoms are associated with progression to dementia in patients with amyloid-positive mild cognitive impairment. J. Alzheimers Dis. 58, 1255–1264 (2017).

    Article  PubMed  Google Scholar 

  31. Pink, A. et al. A longitudinal investigation of Aβ, anxiety, depression, and mild cognitive impairment. Alzheimers Dement. 18, 1824–1831 (2022).

    Article  PubMed  Google Scholar 

  32. Gatchel, J. R. et al. Longitudinal association of depression symptoms with cognition and cortical amyloid among community-dwelling older adults. JAMA Netw. Open. 2, e198964 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pink, A. et al. Interactions between neuropsychiatric symptoms and Alzheimer’s disease neuroimaging biomarkers in predicting longitudinal cognitive decline. Psychiatr. Res Clin Pract 5, 4–15 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hanseeuw, B. J. et al. PET staging of amyloidosis using striatum. Alzheimers Dement. 14, 1281–1292 (2018).

    Article  PubMed  Google Scholar 

  35. Hanseeuw, B. J. et al. Association of anxiety with subcortical amyloidosis in cognitively normal older adults. Mol. Psychiatry 25, 2599–2607 (2020).

    Article  PubMed  Google Scholar 

  36. Gonzales, M. M. et al. Chronic depressive symptomatology and CSF amyloid beta and tau levels in mild cognitive impairment. Int. J. Geriatr. Psychiatry 33, 1305–1311 (2018).

    Article  PubMed  Google Scholar 

  37. Babulal, G. M. et al. Longitudinal changes in anger, anxiety, and fatigue are associated with cerebrospinal fluid biomarkers of Alzheimer’s disease. J. Alzheimers Dis. 87, 141–148 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Johansson, M. et al. Development of apathy, anxiety, and depression in cognitively unimpaired older adults: effects of Alzheimer’s disease pathology and cognitive decline. Biol. Psychiatry 92, 34–43 (2022).

    Article  PubMed  Google Scholar 

  39. Xu, W. et al. Amyloid pathologies modulate the associations of minimal depressive symptoms with cognitive impairments in older adults without dementia. Biol. Psychiatry 89, 766–775 (2021).

    Article  PubMed  Google Scholar 

  40. Chan, C. K. et al. Depressive symptoms and CSF Alzheimer’s disease biomarkers in relation to clinical symptom onset of mild cognitive impairment. Alzheimers Dement. 12, e12106 (2020).

    Google Scholar 

  41. Direk, N. et al. Plasma amyloid β, depression, and dementia in community-dwelling elderly. J. Psychiatr. Res. 47, 479–485 (2013).

    Article  PubMed  Google Scholar 

  42. Blasko, I. et al. Plasma amyloid beta-42 independently predicts both late-onset depression and Alzheimer disease. Am. J. Geriatr. Psychiatry 18, 973–982 (2010).

    Article  PubMed  Google Scholar 

  43. Pomara, N. et al. Plasma amyloid-β dynamics in late-life major depression: a longitudinal study. Transl. Psychiatry 12, 301 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sun, X. et al. Amyloid-associated depression a prodromal depression of Alzheimer disease? Arch. Gen. Psychiatry 65, 542–550 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mackin, R. S. et al. Late-life depression is associated with reduced cortical amyloid burden: findings from the Alzheimer’s Disease Neuroimaging Initiative Depression Project. Biol. Psychiatry 89, 757–765 (2021).

    Article  PubMed  Google Scholar 

  46. Wu, K. Y. et al. Decreased cerebral amyloid-β depositions in patients with a lifetime history of major depression with suspected non-Alzheimer pathophysiology. Front. Aging Neurosci. 14, 857940 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Johansson, M. et al. Mild behavioral impairment and its relation to tau pathology in preclinical Alzheimer’s disease. Transl. Psychiatry. 11, 76 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gatchel, J. R. et al. Depressive symptoms and tau accumulation in the inferior temporal lobe and entorhinal cortex in cognitively normal older adults: a pilot study. J. Alzheimers Dis. 59, 975–985 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ronat, L. et al. Prediction of cognitive decline in healthy aging based on neuropsychiatric symptoms and PET-biomarkers of Alzheimer’s disease. J. Neurol. 271, 2067–2077 (2024).

    Article  PubMed  Google Scholar 

  50. Tommasi, N. S. et al. Affective symptoms and regional cerebral tau burden in early-stage Alzheimer’s disease. Int. J. Geriatr. Psychiatry 36, 1050–1058 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ramakers, I. H. G. B. et al. Anxiety is related to Alzheimer cerebrospinal fluid markers in subjects with mild cognitive impairment. Psychol. Med. 43, 911–920 (2013).

    Article  PubMed  Google Scholar 

  52. Hall, J. R., Petersen, M., Johnson, L. & O’Bryant, S. E. Plasma total tau and neurobehavioral symptoms of cognitive decline in cognitively normal older adults. Front. Psychol. 12, 774049 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bernard, M. A. et al. The relationship between anxiety and levels of Alzheimer's disease plasma biomarkers. J. Alzheimers Dis. 102, 987−993 (2024).

  54. Donovan, N. J. et al. Depressive symptoms and biomarkers of Alzheimer’s disease in cognitively normal older adults. J. Alzheimers Dis. 46, 63–73 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Touron, E. et al. Depressive symptoms in cognitively unimpaired older adults are associated with lower structural and functional integrity in a frontolimbic network. Mol. Psychiatry 27, 5086–5095 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Krell-Roesch, J. et al. FDG-PET and neuropsychiatric symptoms among cognitively normal elderly persons: the Mayo Clinic Study of Aging. J. Alzheimers Dis. 53, 1609–1616 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Krell-Roesch, J. et al. Brain regional glucose metabolism, neuropsychiatric symptoms, and the risk of incident mild cognitive impairment: the Mayo Clinic Study of Aging. Am. J. Geriatr. Psychiatry 29, 179–191 (2021).

    Article  PubMed  Google Scholar 

  58. Ballarini, T. et al. Neuropsychiatric subsyndromes and brain metabolic network dysfunctions in early onset Alzheimer’s disease. Hum. Brain Mapp. 37, 4234–4247 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mah, L., Binns, M. A. & Steffens, D. C. Anxiety symptoms in amnestic mild cognitive impairment are associated with medial temporal atrophy and predict conversion to Alzheimer disease. Am. J. Geriatr. Psychiatry 23, 466–476 (2015).

    Article  PubMed  Google Scholar 

  60. Lee, G. J. et al. Depressive symptoms in mild cognitive impairment predict greater atrophy in Alzheimer’s disease-related regions. Biol. Psychiatry 71, 814–821 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Leeuwis, A. E. et al. Impact of white matter hyperintensity ___location on depressive symptoms in memory-clinic patients: a lesion–symptom mapping study. J. Psychiatry Neurosci. 44, E1–E10 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Vassilaki, M. et al. Association of cerebrovascular imaging biomarkers, depression, and anxiety, with mild cognitive impairment. J Alzheimers Dis. Rep. 7, 1237–1246 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chan, C. K. et al. Association between late-life neuropsychiatric symptoms and cognitive decline in relation to white matter hyperintensities and amyloid burden. J. Alzheimers Dis. 86, 1415–1426 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Du, Y. et al. The relationship between depressive symptoms and cognitive function in Alzheimer’s disease: the mediating effect of amygdala functional connectivity and radiomic features. J Affect. Disord. 330, 101–109 (2023).

    Article  PubMed  Google Scholar 

  65. Yang, T. et al. Abnormal functional connectivity of the amygdala in mild cognitive impairment patients with depression symptoms revealed by resting-state fMRI. Front. Psychiatry 12, 533428 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wang, S. M. et al. Default mode network dissociation linking cerebral beta amyloid retention and depression in cognitively normal older adults. Neuropsychopharmacology 46, 2180–2187 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lee, S. et al. Brain network analysis reveals that amyloidopathy affects comorbid cognitive dysfunction in older adults with depression. Sci. Rep. 11, 4299 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Masters, M. C., Morris, J. C. & Roe, C. M. ‘Noncognitive’ symptoms of early Alzheimer disease: a longitudinal analysis. Neurology 84, 617–622 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Babulal, G. M. et al. Neuropsychiatric symptoms and Alzheimer disease biomarkers independently predict progression to incident cognitive impairment. Am. J. Geriatr. Psychiatry 31, 1190–1199 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Elfgren, C., Gustafson, L., Vestberg, S. & Passant, U. Subjective memory complaints, neuropsychological performance and psychiatric variables in memory clinic attendees: a 3-year follow-up study. Arch. Gerontol. Geriatr. 51, e110–e114 (2010).

    Article  PubMed  Google Scholar 

  71. Almkvist, O. & Tallberg, I.-M. Cognitive decline from estimated premorbid status predicts neurodegeneration in Alzheimer’s disease. Neuropsychology 23, 117–124 (2009).

    Article  PubMed  Google Scholar 

  72. Sinforiani, E., Zucchella, C. & Pasotti, C. Cognitive disturbances in non-demented subjects: heterogeneity of neuropsychological pictures. Arch. Gerontol. Geriatr. 44, 375–380 (2007).

    Article  PubMed  Google Scholar 

  73. Ismail, Z. et al. Prevalence of depression in patients with mild cognitive impairment: a systematic review and meta-analysis. JAMA Psychiatry 74, 58–67 (2017).

    Article  PubMed  Google Scholar 

  74. Castilla-Puentes, R. C. & Habeych, M. E. Subtypes of depression among patients with Alzheimer’s disease and other dementias. Alzheimers Dement. 6, 63–69 (2010).

    Article  PubMed  Google Scholar 

  75. Milwain, E. J. & Nagy, Z. Depressive symptoms increase the likelihood of cognitive impairment in elderly people with subclinical Alzheimer pathology. Dement. Geriatr. Cogn. Disord. 19, 46–50 (2005).

    Article  PubMed  Google Scholar 

  76. Wu, Y., Wu, X., Wei, Q., Wang, K. & Tian, Y. Differences in cerebral structure associated with depressive symptoms in the elderly with Alzheimer’s disease. Front. Aging Neurosci. 12, 107 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wilson, R. et al. Temporal course of depressive symptoms during the development of Alzheimer disease. Neurology 75, 21–26 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Mahgoub, N. & Alexopoulos, G. S. The amyloid hypothesis: is there a role for anti-amyloid treatment in late-life depression? Am. J. Geriatr. Psychiatry. 24, 239–247 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chung, J. K. et al. Lifetime history of depression predicts increased amyloid-β accumulation in patients with mild cognitive impairment. J. Alzheimers Dis. 45, 907–919 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Gonzales, M. M. et al. Association of midlife depressive symptoms with regional amyloid-β and tau in the Framingham Heart Study. J. Alzheimers Dis. 82, 249–260 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ownby, R. L., Crocco, E., Acevedo, A., John, V. & Loewenstein, D. Depression and risk for Alzheimer disease: systematic review, meta-analysis, and metaregression analysis. Arch. Gen. Psychiatry 63, 530–538 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Dotson, V. M., Beydoun, M. A. & Zonderman, A. B. Recurrent depressive symptoms and the incidence of dementia and mild cognitive impairment. Neurology 75, 27–34 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Geerlings, M. I., den Heijer, T., Koudstaal, P. J., Hofman, A. & Breteler, M. M. B. History of depression, depressive symptoms, and medial temporal lobe atrophy and the risk of Alzheimer disease. Neurology 70, 1258–1264 (2008).

    Article  PubMed  Google Scholar 

  84. Barnes, D. E. et al. Midlife vs late-life depressive symptoms and risk of dementia: differential effects for Alzheimer disease and vascular dementia. Arch. Gen. Psychiatry 69, 493–498 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Twait, E. L. et al. Association of amyloid-beta with depression or depressive symptoms in older adults without dementia: a systematic review and meta-analysis. Transl. Psychiatry 14, 25 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Casteele, T. V. et al. Late life depression is not associated with Alzheimer-type tau: preliminary evidence from a next-generation tau ligand PET-MR study. Am. J. Geriatr. Psychiatry 33, 47–62 (2024).

    Article  Google Scholar 

  87. Diniz, B. S., Butters, M. A., Albert, S. M., Dew, M. A. & Reynolds, C. F. Late-life depression and risk of vascular dementia and Alzheimer’s disease: systematic review and meta-analysis of community-based cohort studies. Br. J. Psychiatry 202, 329–335 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Alexopoulos, G. et al. Functional connectivity in the cognitive control network and the default mode network in late-life depression. J. Affect. Disord. 139, 56–65 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ettore, E. et al. Relationships between objectives sleep parameters and brain amyloid load in subjects at risk for Alzheimer’s disease: the INSIGHT-preAD Study. Sleep 42, zsz137 (2019).

    Article  PubMed  Google Scholar 

  90. Winer, J. et al. Sleep as a potential biomarker of tau and β-amyloid burden in the human brain. J. Neurosci. 39, 6315–6324 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Jack, C. R. & Holtzman, D. M. Biomarker modeling of Alzheimer’s disease. Neuron 80, 1347–1358 (2013).

  92. Mander, B. A. et al. β-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation. Nat. Neurosci. 18, 1051–1057 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Winer, J. R. et al. Sleep disturbance forecasts β-amyloid accumulation across subsequent years. Curr. Biol. 30, 4291–4298.e3 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Lucey, B. P. et al. Reduced non-rapid eye movement sleep is associated with tau pathology in early Alzheimer’s disease. Sci. Transl. Med. 11, eaau6550 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. André, C. et al. Brain and cognitive correlates of sleep fragmentation in elderly subjects with and without cognitive deficits. Alzheimers Dement. 11, 142–150 (2019).

    Google Scholar 

  96. Branger, P. et al. Relationships between sleep quality and brain volume, metabolism, and amyloid deposition in late adulthood. Neurobiol. Aging 41, 107–114 (2016).

    Article  PubMed  Google Scholar 

  97. Winer, J. R. et al. Tau and b-amyloid burden predict actigraphy-measured and self-reported impairment and misperception of human sleep. J. Neurosci. 41, 7687–7696 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Shokri-Kojori, E. et al. β-amyloid accumulation in the human brain after one night of sleep deprivation. Proc. Natl Acad. Sci. USA 115, 4483–4488 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Parhizkar, S. et al. Sleep deprivation exacerbates microglial reactivity and Aβ deposition in a TREM2-dependent manner in mice. Sci. Transl. Med. 15, eade6285 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wang, C. et al. APOE-ε4 synergizes with sleep disruption to accelerate Aβ deposition and Aβ-associated tau seeding and spreading. J. Clin. Invest. 133, e169131 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Zavecz, Z. et al. NREM sleep as a novel protective cognitive reserve factor in the face of Alzheimer’s disease pathology. BMC Med. 21, 156 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ju, Y. E. S. et al. Sleep quality and preclinical Alzheimer disease. JAMA Neurol. 70, 587–593 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Liguori, C. et al. Sleep dysregulation, memory impairment, and CSF biomarkers during different levels of neurocognitive functioning in Alzheimer’s disease course. Alzheimers Res. Ther. 12, 5 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ooms, S. et al. Effect of 1 night of total sleep deprivation on cerebrospinal fluid β-amyloid 42 in healthy middle-aged men: a randomized clinical trial. JAMA Neurol. 71, 971–977 (2014).

    Article  PubMed  Google Scholar 

  105. Ju, Y. E. S. et al. Slow wave sleep disruption increases cerebrospinal fluid amyloid-b levels. Brain 140, 2104–2111 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Stankeviciute, L. et al. Differential effects of sleep on brain structure and metabolism at the preclinical stages of AD. Alzheimers Dement. 19, 5371–5386 (2023).

    Article  PubMed  Google Scholar 

  107. Kam, K. et al. Sleep oscillation-specific associations with Alzheimer’s disease CSF biomarkers: novel roles for sleep spindles and tau. Mol. Neurodegener. 14, 10 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Liu, H. et al. Acute sleep loss decreases CSF-to-blood clearance of Alzheimer’s disease biomarkers. Alzheimers Dement. 19, 3055–3064 (2023).

    Article  PubMed  Google Scholar 

  109. Per Kristian, E. et al. Mechanisms behind changes of neurodegeneration biomarkers in plasma induced by sleep deprivation. Brain Commun. 5, fcad343 (2023).

    Article  Google Scholar 

  110. Rosenblum, Y. et al. Divergent associations of slow-wave sleep versus rapid eye movement sleep with plasma amyloid-beta. Ann. Neurol. 96, 46–60 (2024).

    Article  PubMed  Google Scholar 

  111. Liu, Y. et al. Sleep duration and efficiency are associated with plasma amyloid-β in non-demented older people. Neurol. Sci. 43, 305–311 (2022).

    Article  PubMed  Google Scholar 

  112. Chu, H. et al. The association of subjective sleep characteristics and plasma biomarkers of Alzheimer’s disease pathology in older cognitively unimpaired adults with higher amyloid-β burden. J. Neurol. 270, 3008–3021 (2023).

    Article  PubMed  Google Scholar 

  113. Sanchez-Espinosa, M., Atienza, M. & Cantero, J. Sleep deficits in mild cognitive impairment are related to increased levels of plasma amyloid-β and cortical thinning. Neuroimage 98, 395–404 (2014).

    Article  PubMed  Google Scholar 

  114. Liu, Y. et al. Subjective sleep quality in amnestic mild cognitive impairment elderly and its possible relationship with plasma amyloid-β. Front. Neurosci. 14, 611432 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Stankeviciute, L. et al. Amyloid beta–independent sleep markers associated with early regional tau burden and cortical thinning. Alzheimers Dement. 16, e12616 (2024).

    Google Scholar 

  116. Yoon, S. H. et al. Association of sleep disturbances with brain amyloid and tau burden, cortical atrophy, and cognitive dysfunction across the AD continuum. Neurology 101, E2162–E2171 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Barthélemy, N. R. et al. Sleep deprivation affects tau phosphorylation in human cerebrospinal fluid. Ann. Neurol. 87, 700–709 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Pereira, J. et al. Untangling the association of amyloid-β and tau with synaptic and axonal loss in Alzheimer’s disease. Brain 144, 310–324 (2021).

    Article  PubMed  Google Scholar 

  119. Mander, B. A. et al. Inflammation, tau pathology, and synaptic integrity associated with sleep spindles and memory prior to ß-amyloid positivity. Sleep 45, zsac135 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Exalto, L. G. et al. Subjective cognitive decline and self-reported sleep problems: the SCIENCe project. Alzheimers Dement. 14, e12287 (2022).

    Google Scholar 

  121. Lucey, B. et al. Sleep and longitudinal cognitive performance in preclinical and early symptomatic Alzheimer’s disease. Brain 144, 2852–2862 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Holth, J. K. et al. The sleep–wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science 363, 880–884 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Ng, K. et al. Neuropsychiatric symptoms predict hypometabolism in preclinical Alzheimer disease. Neurology 88, 1814–1821 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Sexton, C. E., Storsve, A. B., Walhovd, K. B., Johansen-Berg, H. & Fjell, A. M. Poor sleep quality is associated with increased cortical atrophy in community-dwelling adults. Neurology 83, 967–973 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Alperin, N. et al. Effect of sleep quality on amnestic mild cognitive impairment vulnerable brain regions in cognitively normal elderly individuals. Sleep 42, zsy254 (2019).

    Article  PubMed  Google Scholar 

  126. Fjell, A. M. et al. No phenotypic or genotypic evidence for a link between sleep duration and brain atrophy. Nat. Hum. Behav. https://doi.org/10.1038/s41562-023-01707-5 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Baril, A. A. et al. Association of sleep duration and change over time with imaging biomarkers of cerebrovascular, amyloid, tau, and neurodegenerative pathology. Neurology 102, e207807 (2024).

    Article  PubMed  Google Scholar 

  128. Weihs, A. et al. The relationship between Alzheimer’s-related brain atrophy patterns and sleep macro-architecture. Alzheimers Dement. 14, e12371 (2022).

    Google Scholar 

  129. Elberse, J. D. et al. The interplay between insomnia and Alzheimer’s disease across three main brain networks. Sleep 27, zsae145 (2024).

    Article  Google Scholar 

  130. Kim, H. et al. Resting-state functional connectivity changes in older adults with sleep disturbance and the role of amyloid burden. Mol. Psychiatry https://doi.org/10.1038/s41380-023-02214-9 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Rempe, M. P. et al. Sleep quality differentially modulates neural oscillations and proteinopathy in Alzheimer’s disease. EBioMedicine 92, 104610 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Lauriola, M. et al. Sleep changes without medial temporal lobe or brain cortical changes in community-dwelling individuals with subjective cognitive decline. Alzheimers Dement. 13, 783–791 (2017).

    Article  PubMed  Google Scholar 

  133. Sabia, S. et al. Association of sleep duration in middle and old age with incidence of dementia. Nat. Commun. 12, 2289 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Tadokoro, K. et al. Discrepancy of subjective and objective sleep problems in Alzheimer’s disease and mild cognitive impairment detected by a home-based sleep analysis. J. Clin. Neurosci. 74, 76–80 (2020).

    Article  PubMed  Google Scholar 

  135. Kamal, F., Morrison, C. & Dadar, M. Investigating the relationship between sleep disturbances and white matter hyperintensities in older adults on the Alzheimer’s disease spectrum. Alzheimers Dement. 16, e12553 (2024).

    Google Scholar 

  136. Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H. & Tredici, K. D. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 112, 389–404 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Ereira, S., Waters, S., Razi, A. & Marshall, C. R. Early detection of dementia with default-mode network effective connectivity. Nat. Ment. Health 2, 787–800 (2024).

    Article  Google Scholar 

  138. Chai, Y. et al. Functional connectomics in depression: insights into therapies. Trends Cogn. Sci. 27, 814–832 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Sylvester, C. M. et al. Functional network dysfunction in anxiety and anxiety disorders. Trends Neurosci. 35, 527–535 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Phillips, M. L. et al. Identifying predictors, moderators, and mediators of antidepressant response in major depressive disorder: neuroimaging approaches. Am. J. Psychiatry 172, 124–138 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Chai, Y. et al. Enhanced amygdala–cingulate connectivity associates with better mood in both healthy and depressive individuals after sleep deprivation. Proc. Natl Acad. Sci. USA 120, e2214505120 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Menon, V. 20 years of the default mode network: a review and synthesis. Neuron 111, 2469–2487 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Raichle, M. E. The brain’s default mode network. Annu. Rev. Neurosci. 38, 433–447 (2015).

    Article  PubMed  Google Scholar 

  144. Buckner, R. L. & DiNicola, L. M. The brain’s default network: updated anatomy, physiology and evolving insights. Nat. Rev. Neurosci. 20, 593–608 (2019).

    Article  PubMed  Google Scholar 

  145. Sheline, Y. I. et al. Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol. Psychiatry 67, 584–587 (2010).

    Article  PubMed  Google Scholar 

  146. Palmqvist, S. et al. Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat. Commun. 8, 1214 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Yu, M. et al. Selective impairment of hippocampus and posterior hub areas in Alzheimer’s disease: an MEG-based multiplex network study. Brain 140, 1466–1485 (2017).

    Article  PubMed  Google Scholar 

  148. Buckner, R. L. et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J. Neurosci. 29, 1860–1873 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Sheline, Y. I. et al. The default mode network and self-referential processes in depression. Proc. Natl Acad. Sci. USA 106, 1942–1947 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  150. De Havas, J. A., Parimal, S., Soon, C. S. & Chee, M. W. L. Sleep deprivation reduces default mode network connectivity and anti-correlation during rest and task performance. Neuroimage 59, 1745–1751 (2012).

    Article  PubMed  Google Scholar 

  151. Ward, A. M. et al. Daytime sleepiness is associated with decreased default mode network connectivity in both young and cognitively intact elderly subjects. Sleep 36, 1609–1615 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Marques, D. R., Gomes, A. A., Caetano, G. & Castelo-Branco, M. Insomnia disorder and brain’s default-mode network. Curr. Neurol. Neurosci. Rep. 18, 45 (2018).

    Article  PubMed  Google Scholar 

  153. Hill, N. L. et al. Longitudinal relationships between subjective cognitive decline and objective memory: depressive symptoms mediate between-person associations. J. Alzheimers Dis. 83, 1623–1636 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Xu, W. et al. The role of depression and anxiety in the relationship between poor sleep quality and subjective cognitive decline in Chinese elderly: exploring parallel, serial, and moderated mediation. J. Affect. Disord. 294, 464–471 (2021).

    Article  PubMed  Google Scholar 

  155. Song, D. et al. Sleep disturbance mediates the relationship between depressive symptoms and cognitive function in older adults with mild cognitive impairment. Geriatr. Nurs. 42, 1019–1023 (2021).

    Article  PubMed  Google Scholar 

  156. Gauthier, S. et al. Management of behavioral problems in Alzheimer’s disease. Int. Psychogeriatr. 22, 346–372 (2010).

    Article  PubMed  Google Scholar 

  157. Moraes, W. et al. The effect of donepezil on sleep and REM sleep EEG in patients with Alzheimer disease: a double-blind placebo-controlled study. Sleep 29, 199–205 (2006).

    Article  PubMed  Google Scholar 

  158. Feldman, H. et al. Efficacy and safety of donepezil in patients with more severe Alzheimer’s disease: a subgroup analysis from a randomized, placebo-controlled trial. Int. J. Geriatr. Psychiatry 20, 559–569 (2005).

    Article  PubMed  Google Scholar 

  159. Cummings, J. L., Mcrae, T. & Zhang, R. Effects of donepezil on neuropsychiatric symptoms in patients with dementia and severe behavioral disorders: the Donepezil–Sertraline Study Group. J. Geriatr. Psychiatry 14, 605 (2006).

    Article  Google Scholar 

  160. Riemersma-Van Der Lek, R. F. et al. Effect of bright light and melatonin on cognitive and noncognitive function in elderly residents of group care facilities: a randomized controlled trial. JAMA 299, 2642–2655 (2008).

    Article  PubMed  Google Scholar 

  161. Furio, A. M., Brusco, L. I. & Cardinali, D. P. Possible therapeutic value of melatonin in mild cognitive impairment: a retrospective study. J. Pineal Res. 43, 404–409 (2007).

    Article  PubMed  Google Scholar 

  162. Cardinali, D. et al. Therapeutic application of melatonin in mild cognitive impairment. Am. J. Neurodegener. Dis. 1, 280–291 (2012).

    PubMed  PubMed Central  Google Scholar 

  163. Lucey, B. P. et al. Suvorexant acutely decreases tau phosphorylation and Aβ in the human CNS. Ann. Neurol. 94, 27–40 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Cummings, J., Lanctot, K., Grossberg, G. & Ballard, C. Progress in pharmacologic management of neuropsychiatric syndromes in neurodegenerative disorders: a review. JAMA Neurol. 81, 645–653 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Taylor, W. D. et al. Preliminary evidence that cortical amyloid burden predicts poor response to antidepressant medication treatment in cognitively intact individuals with late-life depression. Am. J. Geriatr. Psychiatry 29, 448–457 (2021).

    Article  PubMed  Google Scholar 

  166. Aboukhatwa, M., Dosanjh, L. & Luo, Y. Antidepressants are a rational complementary therapy for the treatment of Alzheimer’s disease. Mol. Neurodegener. 5, 10 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Hsu, T. W. et al. Efficacy of serotonergic antidepressant treatment for the neuropsychiatric symptoms and agitation in dementia: a systematic review and meta-analysis. Ageing Res. Rev. https://doi.org/10.1016/j.arr.2021.101362 (2021).

  168. Rosenblat, J. D., Kakar, R. & McIntyre, R. S. The cognitive effects of antidepressants in major depressive disorder: a systematic review and meta-analysis of randomized clinical trials. Int. J. Neuropsychopharmacol. 19, pyv082 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Sheline, Y. I. et al. An antidepressant decreases CSF Aβ production in healthy individuals and in transgenic AD mice. Sci. Transl. Med. 6, 268le5 (2014).

    Google Scholar 

  170. Cirrito, J. R. et al. Effect of escitalopram on Aβ levels and plaque load in an Alzheimer mouse model. Neurology 95, E2666–E2674 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Bartels, C., Wagner, M., Wolfsgruber, S., Ehrenreich, H. & Schneider, A. Impact of SSRI therapy on risk of conversion from mild cognitive impairment to Alzheimer’s dementia in individuals with previous depression. Am. J. Psychiatry 175, 232–241 (2018).

    Article  PubMed  Google Scholar 

  172. Cummings, J. L., Schneider, L., Tariot, P. N., Kershaw, P. R. & Yuan, W. Reduction of behavioral disturbances and caregiver distress by galantamine in patients with Alzheimer’s disease. Am. J. Psychiatry 161, 3 (2004).

    Article  Google Scholar 

  173. McCurry, S. M. et al. Increasing walking and bright light exposure to improve sleep in community-dwelling persons with Alzheimer’s disease: results of a randomized, controlled trial. J. Am. Geriatr. Soc. 59, 1393–1402 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Yamadera, H. et al. Effects of bright light on cognitive and sleep–wake (circadian) rhythm disturbances in Alzheimer-type dementia. Psychiatry Clin. Neurosci. 54, 352–353 (2000).

    Article  PubMed  Google Scholar 

  175. Graf, A. et al. The effects of light therapy on Mini-Mental State Examination scores in demented patients. Biol. Psychiatry 50, 725–727 (2001).

    Article  PubMed  Google Scholar 

  176. Mayer, G., Frohnhofen, H., Jokisch, M., Hermann, D. M. & Gronewold, J. Associations of sleep disorders with all-cause MCI/dementia and different types of dementia—clinical evidence, potential pathomechanisms and treatment options: a narrative review. Front. Neurosci. 18, 1372326 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Watt, J. A. et al. Comparative efficacy of interventions for reducing symptoms of depression in people with dementia: systematic review and network meta-analysis. BMJ 372, n532 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Orgeta, V., Qazi, A., Spector, A. & Orrell, M. Psychological treatments for depression and anxiety in dementia and mild cognitive impairment: systematic review and meta-analysis. Br. J. Psychiatry 207, 293–298 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  179. González-Martín, A. M., Aibar Almazán, A., Rivas Campo, Y., Rodríguez Sobrino, N. & Castellote Caballero, Y. Addressing depression in older adults with Alzheimer’s through cognitive behavioral therapy: systematic review and meta-analysis. Front. Aging Neurosci. 15, 1222197 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Justo-Henriques, S., Pérez-Sáez, E., Marques-Castro, A. & Carvalho, J. Effectiveness of a year-long individual cognitive stimulation program in Portuguese older adults with cognitive impairment. Neuropsychol. Dev. Cogn. B 30, 321–335 (2023).

    Article  Google Scholar 

  181. Lök, N., Bademli, K. & Selçuk-Tosun, A. The effect of reminiscence therapy on cognitive functions, depression, and quality of life in Alzheimer patients: randomized controlled trial. Int. J. Geriatr. Psychiatry 34, 47–53 (2019).

    Article  PubMed  Google Scholar 

  182. Koch, G. et al. Precuneus magnetic stimulation for Alzheimer’s disease: a randomized, sham-controlled trial. Brain 145, 3776–3786 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Franzen, P. L. & Buysse, D. J. Sleep disturbances and depression: risk relationships for subsequent depression and therapeutic implications. Dialogues Clin. Neurosci. 10, 473–481 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Ferrarelli, F. & Phillips, M. L. Examining and modulating neural circuits in psychiatric disorders with transcranial magnetic stimulation and electroencephalography: present practices and future developments. Am. J. Psychiatry 178, 400–413 (2021).

  185. Iimori, T. et al. Effectiveness of prefrontal rTMS on cognitive profiles in depression, schizophrenia, and AD: a systematic review. Prog. Neuropsychopharmacol. Biol. Psychiatry 88, 31–40 (2019).

    Article  PubMed  Google Scholar 

  186. Greicius, M. D., Srivastava, G., Reiss, A. L. & Menon, V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc. Natl Acad. Sci. USA 101, 4637–4642 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Hafkemeijer, A., van der Grond, J. & Rombouts, S. A. R. B. Imaging the default mode network in aging and dementia. Biochim. Biophys. Acta Mol. Basis Dis. 1822, 431–441 (2012).

  188. Lunsford-Avery, J. R., Damme, K. S. F., Engelhard, M. M., Kollins, S. H. & Mittal, V. A. Sleep/wake regularity associated with default mode network structure among healthy adolescents and young adults. Sci. Rep. 10, 509 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Greicius, M. D. et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry 62, 429–437 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Cash, R. F. H. et al. Using brain imaging to improve spatial targeting of transcranial magnetic stimulation for depression. Biol. Psychiatry 90, 689–700 (2021).

    Article  PubMed  Google Scholar 

  191. Miao, R. et al. Plasma β-amyloid in mild behavioural impairment—neuropsychiatric symptoms on the Alzheimer’s continuum. J. Geriatr. Psychiatry Neurol. 35, 434–441 (2022).

    Article  PubMed  Google Scholar 

  192. Li, Y. et al. Frequency-dependent changes in the amplitude of low-frequency fluctuations in mild cognitive impairment with mild depression. J. Alzheimers Dis. 58, 1175–1187 (2017).

    Article  PubMed  Google Scholar 

  193. Baune, B. T. et al. Inflammatory biomarkers predict depressive, but not anxiety symptoms during aging: the prospective Sydney Memory and Aging Study. Psychoneuroendocrinology 37, 1521–1530 (2012).

    Article  PubMed  Google Scholar 

  194. Bondy, E. et al. Inflammation is associated with future depressive symptoms among older adults. Brain Behav. Immun. Health 13, 100226 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Fjell, A. M. et al. Neuroinflammation and tau interact with amyloid in predicting sleep problems in aging independently of atrophy. Cereb. Cortex 28, 2775–2785 (2018).

    Article  PubMed  Google Scholar 

  196. Sprecher, K. et al. Poor sleep is associated with CSF biomarkers of amyloid pathology in cognitively normal adults. Neurology 89, 445–453 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Baril, A. A. et al. Longer sleep duration and neuroinflammation in at-risk elderly with a parental history of Alzheimer’s disease. Sleep 47, zsae081 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Pak, V. M., Paul, S., Swieboda, D., Balthazar, M. S. & Wharton, W. Sleep duration and biomarkers of inflammation in African American and white participants with a parental history of Alzheimer’s disease. Alzheimers Dement. 8, e12332 (2022).

    Google Scholar 

  199. van der Flier, W. M. & Scheltens, P. The ATN framework—moving preclinical Alzheimer disease to clinical relevance. JAMA Neurol. 79, 968–970 (2022).

    Article  PubMed  Google Scholar 

  200. Jagust, W. Imaging the evolution and pathophysiology of Alzheimer disease. Nat. Rev. Neurosci. 19, 687–700 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Petersen, R. C. et al. Practice guideline update summary: mild cognitive impairment report of the guideline development, dissemination, and implementation. Neurology 90, 126–135 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Lanctôt, K. L. et al. Neuropsychiatric signs and symptoms of Alzheimer’s disease: new treatment paradigms. Alzheimers Dement. 3, 440–449 (2017).

  203. Lyketsos, C. et al. Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimers Dement. 7, 532–539 (2011).

    Article  PubMed  Google Scholar 

  204. Ju, Y. E. S., Lucey, B. P. & Holtzman, D. M. Sleep and Alzheimer disease pathology—a bidirectional relationship. Nat. Rev. Neurol. 10, 115–119 (2014).

  205. Sperling, R. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7, 280–292 (2011).

    Article  PubMed  Google Scholar 

  206. Jessen, F. et al. The characterisation of subjective cognitive decline. Lancet Neurol. 19, 271–278 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Vermunt, L. et al. Duration of preclinical, prodromal, and dementia stages of Alzheimer’s disease in relation to age, sex, and APOE genotype. Alzheimers Dement. 15, 888–898 (2019).

    Article  PubMed  Google Scholar 

  208. McKhann, G. et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7, 263–269 (2011).

    Article  PubMed  Google Scholar 

  209. Molinuevo, J. et al. Implementation of subjective cognitive decline criteria in research studies. Alzheimers Dement. 13, 296–311 (2017).

    Article  PubMed  Google Scholar 

  210. Jessen, F. et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement. 10, 844–852 (2014).

    Article  PubMed  Google Scholar 

  211. Ebenau, J. L. et al. ATN classification and clinical progression in subjective cognitive decline: the SCIENCe project. Neurology 95, e46–e58 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Rostamzadeh, A., Bohr, L., Wagner, M., Baethge, C. & Jessen, F. Progression of subjective cognitive decline to MCI or dementia in relation to biomarkers for Alzheimer disease: a meta-analysis. Neurology 99, e1866–e1874 (2022).

    Article  PubMed  Google Scholar 

  213. Ebenau, J. L. et al. Association of CSF, plasma, and imaging markers of neurodegeneration with clinical progression in people with subjective cognitive decline. Neurology 98, e1315–e1326 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Lerch, O. et al. Predicting progression from subjective cognitive decline to mild cognitive impairment or dementia based on brain atrophy patterns. Alzheimers Res. Ther. 16, 153 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by several US National Institute of Aging (NIA) and Alzheimer’s Association (AA) grants: M.Y. is supported by grants from the Alzheimer’s Association (AARF-22-722571) and the National Institute on Aging (U19 AG074879, R01 AG019771, P30 AG072976, U01 AG072177 and U01 AG068057).

Author information

Authors and Affiliations

Authors

Contributions

Y.C. and M.Y. conceived and designed the study and drafted the initial manuscript. Y.C. created the figures and tables. E.S.-K. and A.J.S. critically reviewed the manuscript for intellectual content and further added to the draft. All authors reviewed and edited subsequent drafts and approved the final version.

Corresponding author

Correspondence to Meichen Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Yong He, Patrizia Vannini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, Y., Shokri-Kojori, E., Saykin, A.J. et al. Anxious–depressive symptoms and sleep disturbances across the Alzheimer disease spectrum. Nat. Mental Health 3, 594–612 (2025). https://doi.org/10.1038/s44220-025-00416-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-025-00416-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing