Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Bridging the scale between the local particular and the global universal in climate change assessments of cities

Abstract

Identifying gaps in urban climate change assessment is crucial for developing the new Intergovernmental Panel on Climate Change (IPCC) special report on cities. To bridge the gap between the understanding of local interventions and global climate goals, we call for the strengthening of assessment tools such as urban typologies, case study synthesis and big geospatial data studies. We sort research gaps into five overarching themes: (1) urban form, (2) data and artificial intelligence, (3) policies and governance, (4) system transformation and (5) potentials, costs and losses. Using these methods for categorizing and analyzing cities based on shared characteristics will enable the tailoring and scaling of local climate solutions to global contexts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Assessment gaps and relevant assessment methodologies and tools.
Fig. 2: Urban data and physical infrastructure.

Similar content being viewed by others

References

  1. Lwasa, S. et al. Urban systems and other settlements. In IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2022).

  2. Bai, X. et al. Six research priorities for cities and climate change. Nature 555, 23–25 (2018).

    Article  Google Scholar 

  3. Solecki, W. et al. A conceptual framework for an urban areas typology to integrate climate change mitigation and adaptation. Urban Clim. 14, 116–137 (2015).

    Article  Google Scholar 

  4. Haberl, H. et al. Built structures influence patterns of energy demand and CO2 emissions across countries. Nat. Commun. 14, 3898 (2023).

    Article  Google Scholar 

  5. Demuzere, M. et al. Mitigating and adapting to climate change: multi-functional and multi-scale assessment of green urban infrastructure. J. Environ. Manage. 146, 107–115 (2014).

    Article  Google Scholar 

  6. Zekar, A., Milojevic-Dupont, N., Zumwald, M., Wagner, F. & Creutzig, F. Urban form features determine spatio-temporal variation of ambient temperature: a comparative study of three European cities. Urban Clim. 49, 101467 (2023).

    Article  Google Scholar 

  7. Silva, M., Leal, V., Oliveira, V. & Horta, I. M. A scenario-based approach for assessing the energy performance of urban development pathways. Sustain. Cities Soc. 40, 372–382 (2018).

    Article  Google Scholar 

  8. Creutzig, F., Baiocchi, G., Bierkandt, R., Pichler, P.-P. & Seto, K. C. Global typology of urban energy use and potentials for an urbanization mitigation wedge. Proc. Natl Acad. Sci. USA 112, 6283–6288 (2015).

    Article  Google Scholar 

  9. Mehrotra, S., Bardhan, R. & Ramamritham, K. Outdoor thermal performance of heterogeneous urban environment: an indicator-based approach for climate-sensitive planning. Sci. Total Environ. 669, 872–886 (2019).

    Article  Google Scholar 

  10. Wagner, F. et al. A causal discovery approach to learn how urban form shapes sustainable mobility across continents. Preprint at http://arxiv.org/abs/2308.16599 (2023).

  11. Henderson, V. J., Peng, C. & Baruah, N. Colonial Legacies: Shaping African Cities (SERC Spatial Economics Reseach Centre 44 SERC discussion paper PAPER 226) (2017).

  12. Chen, G. et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 11, 537 (2020).

    Article  Google Scholar 

  13. Puntub, W. et al. Linking science and practice in participatory future-oriented assessment and planning of human heat stress vulnerability in Bonn, Germany. J. Environ. Plan. Manag. 66, 1918–1937 (2023).

    Article  Google Scholar 

  14. Huong, H. T. L. & Pathirana, A. Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam. Hydrol. Earth Syst. Sci. 17, 379–394 (2013).

    Article  Google Scholar 

  15. Creutzig, F. & Reisch, L. A. A joint research agenda for climate action bridges behavioral sciences and urban planning. Commun. Psychol. 2, 101 (2024).

    Article  Google Scholar 

  16. Garschagen, M. & Romero-Lankao, P. Exploring the relationships between urbanization trends and climate change vulnerability. Clim. Change 133, 37–52 (2015).

    Article  Google Scholar 

  17. Araos, M. et al. Climate change adaptation planning in large cities: a systematic global assessment. Environ. Sci. Policy 66, 375–382 (2016).

    Article  Google Scholar 

  18. Reckien, D. et al. How are cities planning to respond to climate change? Assessment of local climate plans from 885 cities in the EU-28. J. Clean. Prod. 191, 207–219 (2018).

    Article  Google Scholar 

  19. Santos dos, G. F. et al. Socioeconomic urban environment in Latin America: towards a typology of cities. Sustainability 15, 6380 (2023).

    Article  Google Scholar 

  20. Hsu, A., Sheriff, G., Chakraborty, T. & Manya, D. Disproportionate exposure to urban heat island intensity across major US cities. Nat. Commun. 12, 2721 (2021).

    Article  Google Scholar 

  21. Gilligan, C. Cooling effects of urban trees are strongest in under-resourced neighbourhoods. Nat. Rev. Earth Environ. 4, 517 (2023).

    Article  Google Scholar 

  22. Strauss, B. H. et al. Economic damages from Hurricane Sandy attributable to sea level rise caused by anthropogenic climate change. Nat. Commun. 12, 2720 (2021).

    Article  Google Scholar 

  23. Adélaïde, L., Chanel, O. & Pascal, M. Health effects from heat waves in France: an economic evaluation. Eur. J. Health Econ. 23, 119–131 (2022).

    Article  Google Scholar 

  24. Peng, L. L. H. & Jim, C. Y. Economic evaluation of green-roof environmental benefits in the context of climate change: the case of Hong Kong. Urban For. Urban Green. 14, 554–561 (2015).

    Article  Google Scholar 

  25. Dottori, F., Mentaschi, L., Bianchi, A., Alfieri, L. & Feyen, L. Cost-effective adaptation strategies to rising river flood risk in Europe. Nat. Clim. Change 13, 196–202 (2023).

    Article  Google Scholar 

  26. Creutzig, F. & He, D. Climate change mitigation and co-benefits of feasible transport demand policies in Beijing. Transp. Res. D Transp. Environ. 14, 120–131 (2009).

    Article  Google Scholar 

  27. Brandt, J., Goyal, N., Moroney, M., Janaskie, S. & Hsu, A. Ambient air pollution and consumer spending: evidence from Spain. PLoS ONE 19, e0292245 (2024).

    Article  Google Scholar 

  28. Kotz, M., Levermann, A. & Wenz, L. The economic commitment of climate change. Nature 628, 551–557 (2024).

    Article  Google Scholar 

  29. Bernardo, V., Fageda, X. & Flores-Fillol, R. Pollution and congestion in urban areas: the effects of low emission zones. Econ. Transp. 26–27, 100221 (2021).

    Article  Google Scholar 

  30. Chamberlain, R. C., Fecht, D., Davies, B. & Laverty, A. A. Effects of low emission zones and congestion charging zones on physical health outcomes: a systematic review. Lancet 400, S30 (2022).

    Article  Google Scholar 

  31. Koch, N., Naumann, L., Pretis, F., Ritter, N. & Schwarz, M. Attributing agnostically detected large reductions in road CO2 emissions to policy mixes. Nat. Energy 7, 844–853 (2022).

    Article  Google Scholar 

  32. Hsu, A. et al. Performance determinants show European cities are delivering on climate mitigation. Nat. Clim. Change 10, 1015–1022 (2020).

    Article  Google Scholar 

  33. Burley Farr, K., Song, K., Yeo, Z. Y., Johnson, E. & Hsu, A. Cities and regions tackle climate change mitigation but often focus on less effective solutions. Commun. Earth Environ. 4, 439 (2023).

    Article  Google Scholar 

  34. Heikkinen, M., Karimo, A., Klein, J., Juhola, S. & Ylä-Anttila, T. Transnational municipal networks and climate change adaptation: a study of 377 cities. J. Clean. Prod. 257, 120474 (2020).

    Article  Google Scholar 

  35. Creutzig, F. et al. Towards demand-side solutions for mitigating climate change. Nat. Clim. Change 8, 260–263 (2018).

    Article  Google Scholar 

  36. Creutzig, F., Roy, J. & Minx, J. Demand-side climate change mitigation: where do we stand and where do we go? Environ. Res. Lett. 19, 040201 (2024).

    Article  Google Scholar 

  37. Rodriguez Mendez, Q., Fuss, S., Lück, S. & Creutzig, F. Assessing global urban CO2 removal.Nat. Cities 1, 416–423 (2024).

    Google Scholar 

  38. May, C. K. Complex adaptive governance systems: a framework to understand institutions, organizations and people in socio-ecological systems. Socio Ecol. Pract. Res. 4, 39–54 (2022).

    Article  Google Scholar 

  39. Green, O. O. et al. Adaptive governance to promote ecosystem services in urban green spaces. Urban Ecosyst. 19, 77–93 (2016).

    Article  Google Scholar 

  40. Hughes, S., Giest, S. & Tozer, L. Accountability and data-driven urban climate governance. Nat. Clim. Change 10, 1085–1090 (2020).

    Article  Google Scholar 

  41. Creutzig, F. et al. Upscaling urban data science for global climate solutions. Glob. Sustain 2, e2 (2019).

    Article  Google Scholar 

  42. Rivas, S. et al. Guidebook: How to Develop a Climate Action Plan for Cities in India. JRC Science for Policy Report (European Commission, 2022).

  43. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward (National Academies Press, 2022).

  44. Sargent, M. R. et al. Majority of US urban natural gas emissions unaccounted for in inventories. Proc. Natl Acad. Sci. USA 118, e2105804118 (2021).

    Article  Google Scholar 

  45. Hsu, A., Wang, X., Tan, J., Toh, W. & Goyal, N. Predicting European cities’ climate mitigation performance using machine learning. Nat. Commun. 13, 7487 (2022).

    Article  Google Scholar 

  46. Berrill, P. et al. Comparing urban form influences on travel distance, car ownership and mode choice. Transp. Res. D Transp. Environ. 128, 104087 (2024).

    Article  Google Scholar 

  47. Nachtigall, F., Wagner, F., Berrill, P. & Creutzig, F. Built environment and travel: Tackling non-linear residential self-selection with double machine learning. Trans. Res. D Trans. Environ. 140, 104593 (2025).

    Article  Google Scholar 

  48. Quay, R. Anticipatory governance: a tool for climate change adaptation. J. Am. Plan. Assoc. 76, 496–511 (2010).

    Article  Google Scholar 

  49. Xu, Y., Cugurullo, F., Zhang, H., Gaio, A. & Zhang, W. The emergence of artificial intelligence in anticipatory urban governance: multi-scalar evidence of China’s transition to city brains. J. Urban Technol. https://doi.org/10.1080/10630732.2023.2292823 (2024).

  50. Kılkış, Ş., Ulpiani, G. & Vetters, N. Visions for climate neutrality and opportunities for co-learning in European cities. Renew. Sustain. Energy Rev. 195, 114315 (2024).

    Article  Google Scholar 

  51. Climate-neutral and smart cities. ec.europa.eu https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe/eu-missions-horizon-europe/climate-neutral-and-smart-cities_en (2024).

  52. Wagner, F. et al. Using explainable machine learning to understand how urban form shapes sustainable mobility. Transp. Res. D Transp. Environ. 111, 103442 (2022).

    Article  Google Scholar 

  53. On the Importance of Human-Centricity and Data (World Economic Forum, 2021).

  54. Milojevic-Dupont, N. et al. EUBUCCO v0.1: European building stock characteristics in a common and open database for 200+ million individual buildings. Sci. Data 10, 147 (2023).

    Article  Google Scholar 

  55. Chamberlain, H. R. et al. Building footprint data for countries in Africa: to what extent are existing data products comparable? Comput. Environ. Urban Syst. 110, 102104 (2024).

    Article  Google Scholar 

  56. Creutzig, F. et al. Seeking Synergy Solutions: How Cities Can Act on Both Climate and the SDGs (SDSG, 2024).

  57. Belmin, C., Hoffmann, R., Pichler, P.-P. & Weisz, H. Fertility transition powered by women’s access to electricity and modern cooking fuels. Nat. Sustain. 5, 245–253 (2022).

    Article  Google Scholar 

  58. Lutz, W. & Muttarak, R. Forecasting societies’ adaptive capacities through a demographic metabolism model. Nat. Clim. Change 7, 177–184 (2017).

    Article  Google Scholar 

  59. Amel, E., Manning, C., Scott, B. & Koger, S. Beyond the roots of human inaction: fostering collective effort toward ecosystem conservation. Science 356, 275–279 (2017).

    Article  Google Scholar 

  60. Haraway, D. J. Staying with the Trouble: Making Kin in the Chthulucene (Duke Univ. Press, 2016).

  61. Daniel, J. L. & Wiek, A. The role of universities in fostering urban and regional sustainability. In Institutional and Social Innovation for Sustainable Urban Development (Routledge, 2012).

  62. Creutzig, F., Goetzke, F., Ramakrishnan, A., Andrijevic, M. & Perkins, P. Designing a virtuous cycle: quality of governance, effective climate change mitigation, and just outcomes support each other. Glob. Environ. Change 82, 102726 (2023).

    Article  Google Scholar 

  63. Hügel, S. & Davies, A. R. Public participation, engagement and climate change adaptation: a review of the research literature. WIREs Clim. Change 11, e645 (2020).

    Article  Google Scholar 

  64. Aasen, M. & Sælen, H. Right-wing populism and climate policies: explaining opposition to road tolls in Norway. Transp. Res. D Transp. Environ. 105, 103222 (2022).

    Article  Google Scholar 

  65. Sudmant, A., Creutzig, F. & Mi, Z. Replicate and generalize to make urban research coherent. Int. J. Urban Sci. 0, 1–22 (2024).

    Google Scholar 

  66. Creutzig, F. et al. Towards a public policy of cities and human settlements in the 21st century. Npj Urban Sustain. 4, 29 (2024).

    Article  Google Scholar 

  67. Salama, A. M. et al. People–place narratives as knowledge typologies for social sustainability: cases from urban contexts in the Global South. Buildings 14, 1001 (2024).

    Article  Google Scholar 

  68. Chung, J., Buswala, B., Keith, M. & Schwanen, T. Climate mobilities into cities: a systematic review of literature from 2011 to 2020. Urban Clim. 45, 101252 (2022).

    Article  Google Scholar 

  69. Lemoine-Rodríguez, R., Inostroza, L. & Zepp, H. Does urban climate follow urban form? Analysing intraurban LST trajectories versus urban form trends in 3 cities with different background climates. Sci. Total Environ. 830, 154570 (2022).

    Article  Google Scholar 

  70. Lamb, W. F. et al. What are the social outcomes of climate policies? A systematic map and review of the ex-post literature. Environ. Res. Lett. 15, 113006 (2020).

    Article  Google Scholar 

  71. van der Voorn, T. et al. Advancing participatory backcasting for climate change adaptation planning using 10 cases from 3 continents. Clim. Risk Manag. 42, 100559 (2023).

    Article  Google Scholar 

  72. Ponciano, L. How citizens engage with the social media presence of climate authorities: the case of five Brazilian cities. Npj Clim. Action 2, 44 (2023).

    Article  Google Scholar 

  73. Milojevic-Dupont, N. & Creutzig, F. Machine learning for geographically differentiated climate change mitigation in urban areas. Sustain. Cities Soc. 64, 102526 (2021).

    Article  Google Scholar 

  74. Bardhan, R., Gupta, P. & Majumdar, A. GeoInFuse—a data-driven information fusion for intra-urban form classification in data-scarce heterogeneous cities. Cities 127, 103762 (2022).

    Article  Google Scholar 

  75. Jamei, E. et al. Urban design parameters for heat mitigation in tropics. Renew. Sustain. Energy Rev. 134, 110362 (2020).

    Article  Google Scholar 

  76. Li, X.-X. & Norford, L. K. Evaluation of cool roof and vegetations in mitigating urban heat island in a tropical city, Singapore. Urban Clim. 16, 59–74 (2016).

    Article  Google Scholar 

  77. Horst, H. A., Sargent, A. & Gaspard, L. Beyond extraction: data strategies from the Global South. New Media Soc. 26, 1366–1383 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge contributions to discussions by participants of the What Works Climate three-day workshop on Scoping Gaps in Assessments on Cities and Climate, held virtually in November 2023. We especially thank V. Castan Broto for detailed feedback on the manuscript and critical guidance on improving the main argument.

Author information

Authors and Affiliations

Authors

Contributions

F.C. conceptualized the paper, designed the figures and drafted a first version of the manuscript and the tables. C.B. and N.M.-D. refined and contributed to Table 1. T.M., R.B., C.B., W.C., M.G., A.H., Ş.K., S.T.I., N.M.-D., M.P., R.H.M.P., P.S., D.Ü.-V. and D.S. provided text, input, feedback and references to the full manuscript, supported the specifications of Table 2, and helped to balance out the overall text.

Corresponding author

Correspondence to Felix Creutzig.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cities thanks Sara Hughes, Carrie Mitchell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Creutzig, F., McPhearson, T., Bardhan, R. et al. Bridging the scale between the local particular and the global universal in climate change assessments of cities. Nat Cities 2, 369–378 (2025). https://doi.org/10.1038/s44284-025-00226-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44284-025-00226-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing