Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biomimetic air purification with liquid-gating topological gradient microfluidics

Abstract

Particle capture is vital for air purification in environmental protection, regional climate regulation and public health. In particular, filters operating with gas–liquid interfaces can provide efficient particle absorption and removal while serving in a maintenance-free manner. Here a liquid-gating topological gradient microfluidics (LGTGM) device is developed for air purification inspired by the liquid-assisted filtration mechanism of the human respiratory system. The LGTGM device is based on the continuous generation of microbubbles from a supplied gas flow. Due to the large specific interfacial surface area, together with tailored wettability in the device, particulate pollutants in the microbubbles preferentially transfer across the gas–liquid interface and enter a collection liquid. Benefiting from the fine regulation of bubble generation dynamics, multiple LGTGM devices can be combined in series or parallel to achieve efficient air purification as well as high-throughput processing. Moreover, the application potential of LGTGM is demonstrated for smoke filtration, disease prevention and visual detection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagram of the biomimetic air purification system.
Fig. 2: Generation of LGTGM.
Fig. 3: Study of the bubble generation process by topological gradient microfluidics.
Fig. 4: Bubble-aided air purification process based on LGTGM.
Fig. 5: Verification of the purification efficiency and extended applications of LAPS.

Similar content being viewed by others

Data availability

All data are available within the article and its Supplementary Information.

References

  1. Hill, W. et al. Lung adenocarcinoma promotion by air pollutants. Nature 616, 159–167 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sengupta, S. et al. Subnational implications from climate and air pollution policies in India’s electricity sector. Science 378, eabh1484 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Kotsiliti, E. Air pollution and oesophageal cancer risk. Nat. Rev. Gastroenterol. Hepatol. https://doi.org/10.1038/s41575-023-00786-z (2023).

  4. Freese, L. M., Chossière, G. P., Eastham, S. D., Jenn, A. & Selin, N. E. Nuclear power generation phase-outs redistribute US air quality and climate-related mortality risk. Nat. Energy https://doi.org/10.1038/s41560-023-01241-8 (2023).

  5. Gu, B. J. et al. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution. Science 374, 758–762 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Colmer, J., Hardman, I., Shimshack, J. & Voorheis, J. Disparities in PM2.5 air pollution in the United States. Science 369, 575–578 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Heald, C. L. & Kroll, J. H. A radical shift in air pollution. Science 374, 688–689 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Thurston, G. D., Chen, L. C. & Campen, M. Particle toxicity’s role in air pollution. Science 375, 506 (2022).

    Article  PubMed  Google Scholar 

  9. Nel, A. Air pollution-related illness: effects of particles. Science 308, 804–806 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, Y. M. et al. Continuous air purification by aqueous interface filtration and absorption. Nature 610, 74–80 (2022).

    Article  CAS  Google Scholar 

  11. Zhang, G. H. et al. High-performance particulate matter including nanoscale particle removal by a self-powered air filter. Nat. Commun. 11, 1653 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, Y. Y. et al. Semi-interpenetrating polymer network biomimetic structure enables superelastic and thermostable nanofibrous aerogels for cascade filtration of PM2.5. Adv. Funct. Mater. 30, 1910426 (2020).

    Article  CAS  Google Scholar 

  13. Zhou, Z. P., Liu, T. Y., Khan, A. U. & Liu, G. L. Block copolymer-based porous carbon fibers. Sci. Adv. 5, eaau6852 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liang, B. et al. Microporous membranes comprising conjugated polymers with rigid backbones enable ultrafast organic-solvent nanofiltration. Nat. Chem. 10, 961–967 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Li, P. et al. Metal–organic frameworks with photocatalytic bactericidal activity for integrated air cleaning. Nat. Commun. 10, 2177 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nataraj, S. K., Yang, K. S. & Aminabhavi, T. M. Polyacrylonitrile-based nanofibers—a state-of-the-art review. Prog. Polym. Sci. 37, 487–513 (2012).

    Article  CAS  Google Scholar 

  17. Li, M. Q. et al. Novel hollow fiber air filters for the removal of ultrafine particles in PM2.5 with repetitive usage capability. Environ. Sci. Technol. 51, 10041–10049 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, X. L. et al. Low-resistance dual-purpose air filter releasing negative ions and effectively capturing PM2.5. ACS Appl. Mater. Interfaces 9, 12054–12063 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, Y. X. et al. Polytetrafluoroethylene/polyphenylene sulfide needle-punched triboelectric air filter for efficient particulate matter removal. ACS Appl. Mater. Interfaces 11, 48437–48449 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, Y. G., Zhu, Y. J., Xiong, Z. C., Wu, J. & Chen, F. Bioinspired ultralight inorganic aerogel for highly efficient air filtration and oil–water separation. ACS Appl. Mater. Interfaces 10, 13019–13027 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Yang, C. Y., Yu, Y. R., Shang, L. R. & Zhao, Y. J. Flexible hemline-shaped microfibers for liquid transport. Nat. Chem. Eng. 1, 87–96 (2024).

    Article  Google Scholar 

  22. Liu, C. et al. Transparent air filter for high-efficiency PM2.5 capture. Nat. Commun. 6, 6205 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Kwon, H. J. et al. Long-lifetime water-washable ceramic catalyst filter for air purification. Nat. Commun. 14, 520 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, Y. et al. Bio-based antimicrobial ionic materials fully composed of natural products for elevated air purification. Adv. Sustain. Syst. 4, 2000046 (2020).

    Article  CAS  Google Scholar 

  25. Zhang, Y. Y. et al. Preparation of nanofibrous metal–organic framework filters for efficient air pollution control. J. Am. Chem. Soc. 138, 5785–5788 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Stanford, M. G. et al. Self-sterilizing laser-induced graphene bacterial air filter. ACS Nano 13, 11912–11920 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, Q. F. et al. Polarity-dominated stable N97 respirators for airborne virus capture based on nanofibrous membranes. Angew. Chem. Int. Ed. Engl. 60, 23756–23762 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu, M., Wang, S. & Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2, 17036 (2017).

    Article  CAS  Google Scholar 

  29. Hou, X., Hu, Y., Grinthal, A., Khan, M. & Aizenberg, J. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour. Nature 519, 70–73 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Miao, W., Tian, Y. & Jiang, L. Bioinspired superspreading surface: from essential mechanism to application. Acc. Chem. Res. 55, 1467–1479 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Epstein, A. K., Wong, T. S., Belisle, R. A., Boggs, E. M. & Aizenberg, J. Liquid-infused structured surfaces with exceptional anti-biofouling performance. Proc. Natl Acad. Sci. USA 109, 13182–13187 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sheng, Z. Z. et al. Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport. Sci. Adv. 4, eaao6724 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hoeven, J., Shneidman, A. V., Nicolas, N. J. & Aizenberg, J. Evaporation-induced self-assembly of metal oxide inverse opals: from synthesis to applications. Acc. Chem. Res. 55, 1809–1820 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sznitman, J. Revisiting airflow and aerosol transport phenomena in the deep lungs with microfluidics. Chem. Rev. 122, 7182–7204 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Schneider, J. L. et al. The aging lung: physiology, disease, and immunity. Cell 184, 1990–2019 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jorgensen, A. M., Yoo, J. J. & Atala, A. Solid organ bioprinting: strategies to achieve organ function. Chem. Rev. 120, 11093–11127 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mi, S., Fu, T. T., Zhu, C. Y., Jiang, S. C. & Ma, Y. G. Mechanism of bubble formation in step-emulsification devices. AIChE J. 66, e16777 (2020).

    Article  CAS  Google Scholar 

  38. Eggersdorfer, M. L., Seybold, H., Ofner, A., Weitz, D. A. & Studart, A. R. Wetting controls of droplet formation in step emulsification. Proc. Natl Acad. Sci. USA 115, 9479–9484 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dinsmore, A. D. et al. Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298, 1006–1009 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Wei, Y., Zhang, Q. & Thompson, J. E. The wetting behavior of fresh and aged soot studied through contact angle measurements. Atmos. Clim. Sci. 7, 11–22 (2017).

    CAS  Google Scholar 

  41. Binks, B. P. & Lumsdon, S. O. Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir 16, 8622–8631 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (T2225003 and 32271383), the National Key Research and Development Program of China (2022YFB4700100), the Nanjing Medical Science and Technique Development Foundation (ZKX21019), the Clinical Trials from Nanjing Drum Tower Hospital (2022-LCYJ-ZD-01) and the Guangdong Basic and Applied Basic Research Foundation (2021B1515120054).

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and L. Shang conceived the idea and designed the experiment; H.C. conducted experiments and data analysis; H.C., L. Shang and Y.Z. wrote the paper. H.C., L. Sun, Y.W., L.C. and L. Shang contributed to scientific discussion of the paper.

Corresponding authors

Correspondence to Yuanjin Zhao or Luoran Shang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Taotao Fu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22 and Discussion.

Reporting Summary

Supplementary Video 1

Generation of bubbles from a nozzle featured with topological confinement.

Supplementary Video 2

Generation of bubbles by LGTGM with a single nozzle.

Supplementary Video 3

Generation of bubbles by LGTGM with parallel nozzles.

Supplementary Video 4

Particle transfer at the gas–liquid interface.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Sun, L., Wang, Y. et al. Biomimetic air purification with liquid-gating topological gradient microfluidics. Nat Chem Eng 1, 650–660 (2024). https://doi.org/10.1038/s44286-024-00128-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44286-024-00128-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing