Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Monitoring and dynamically controlling glucose uptake rate and central metabolism

Abstract

The rate of glucose import directly affects the maximum possible flux of central carbon metabolism. However, few tools can directly monitor the cellular glucose uptake rate. Here we report the development of a set of programmable bifunctional glucose uptake rate biosensors (GURBs) for real-time monitoring of glucose uptake rate, which enable the dynamic activation and inhibition of glucose uptake and central metabolism in Escherichia coli. These genetic circuits are used to monitor the glucose uptake rates of strains under different culture conditions. Also, feedback-loop control systems are designed to make cells rely on the glucose uptake rate to tune the target metabolic modules, resulting in a substantial increase of the titers of l-tryptophan, riboflavin and d-lactic acid. The glucose-uptake-rate-responsive genetic circuits developed in this study will serve as an effective tool for the dynamic control of glucose uptake and central metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of a glucose uptake rate biosensor.
Fig. 2: Construction and characterization of GURB variants that respond positively to the glucose uptake rate.
Fig. 3: Quantitative analysis of GURB28 responses.
Fig. 4: Glucose uptake rates of strains measured under different culture conditions using the online biosensor and offline residual glucose analyzer.
Fig. 5: Enhanced production of l-Trp biosynthesis in E. coli by dynamic regulation using the GURB system.
Fig. 6: Enhanced production of riboflavin, and d-lactic acid biosynthesis in E. coli by dynamic regulation using the GURB system.

Similar content being viewed by others

Data availability

The main data supporting the findings of this study are available within the Article and its Supplementary Information. Specific data P values are included in the source data files. Additional details on the datasets and protocols that support the findings of this study will be made available by the corresponding author upon request. Data are provided at https://doi.org/10.6084/m9.figshare.24790872 (ref. 71). Source data are provided with this paper.

References

  1. Chae, T. U. et al. Recent advances in systems metabolic engineering tools and strategies. Curr. Opin. Biotechnol. 47, 67–82 (2017).

    CAS  PubMed  Google Scholar 

  2. Krivoruchko, A., Siewers, V. & Nielsen, J. Opportunities for yeast metabolic engineering: lessons from synthetic biology. Biotechnol. J. 6, 262–276 (2011).

    CAS  PubMed  Google Scholar 

  3. Liu, Y., Shin, H. D., Li, J. & Liu, L. Toward metabolic engineering in the context of system biology and synthetic biology: advances and prospects. Appl. Microbiol. Biotechnol. 99, 1109–1118 (2015).

    CAS  PubMed  Google Scholar 

  4. Kotte, O., Zaugg, J. B. & Heinemann, M. Bacterial adaptation through distributed sensing of metabolic fluxes. Mol. Syst. Biol. 6, 619–627 (2010).

    Google Scholar 

  5. Fang, L. et al. Genome-scale target identification in Escherichia coli for high-titer production of free fatty acids. Nat. Commun. 12, 4976 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Yeom, S. J. et al. Single-cell-based screening and engineering of d-amino acid amidohydrolases using artificial amidophenol substrates and microbial biosensors. J. Agric. Food Chem. 70, 1203–1211 (2022).

    CAS  PubMed  Google Scholar 

  7. Dekker, L. & Polizzi, K. M. Sense and sensitivity in bioprocessing-detecting cellular metabolites with biosensors. Curr. Opin. Chem. Biol. 40, 31–36 (2017).

    CAS  PubMed  Google Scholar 

  8. Rogers, J. K., Taylor, N. D. & Church, G. M. Biosensor-based engineering of biosynthetic pathways. Curr. Opin. Biotechnol. 42, 84–91 (2016).

    CAS  PubMed  Google Scholar 

  9. Shi, S., Ang, E. L. & Zhao, H. In vivo biosensors: mechanisms, development and applications. J. Ind. Microbiol. Biotechnol. 45, 491–516 (2018).

    CAS  PubMed  Google Scholar 

  10. Zhang, J., Jensen, M. K. & Keasling, J. D. Development of biosensors and their application in metabolic engineering. Curr. Opin. Chem. Biol. 28, 1–8 (2015).

    PubMed  Google Scholar 

  11. Liu, D., Evans, T. & Zhang, F. Applications and advances of metabolite biosensors for metabolic engineering. Metab. Eng. 31, 35–43 (2015).

    PubMed  Google Scholar 

  12. Binder, S. et al. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol. 13, R40 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, D. et al. Construction, model-based analysis, and characterization of a promoter library for fine-tuned gene expression in Bacillus subtilis. ACS Synth. Biol. 7, 1785–1797 (2018).

    CAS  PubMed  Google Scholar 

  14. Jiao, S., Yu, H. & Shen, Z. Core element characterization of Rhodococcus promoters and development of a promoter-RBS mini-pool with different activity levels for efficient gene expression. N. Biotechnol. 44, 41–49 (2018).

    CAS  PubMed  Google Scholar 

  15. Guiziou, S. et al. A part toolbox to tune genetic expression in Bacillus subtilis. Nucleic Acids Res. 44, 7495–7508 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, H. et al. Monitoring in vivo metabolic flux with a designed whole-cell metabolite biosensor of shikimic acid. Biosens. Bioelectron. 98, 457–465 (2017).

    CAS  PubMed  Google Scholar 

  17. Wang, W. et al. E. coli biosensor based on modular GFP and luxI/luxR cyclic amplification circuit for sensitive detection of lysine. Anal. Bioanal. Chem. 414, 8299–8307 (2022).

    CAS  PubMed  Google Scholar 

  18. Yeom, S. J. et al. A synthetic microbial biosensor for high-throughput screening of lactam biocatalysts. Nat. Commun. 9, 5053 (2018).

    PubMed  PubMed Central  Google Scholar 

  19. Kang, Z. Q. et al. An l-2-hydroxyglutarate biosensor based on specific transcriptional regulator LhgR. Nat. Commun. 12, 3619 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Xiao, D. et al. A d-2-hydroxyglutarate biosensor based on specific transcriptional regulator DhdR. Nat. Commun. 12, 7108 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Canbay, E. et al. A microbial biosensor based on Lactobacillus delbruecki sp. bacterial cells for simultaneous determination of lactic and pyruvic acid. Food Chem. 169, 197–202 (2015).

    CAS  PubMed  Google Scholar 

  22. Pereira, A. C. et al. Amperometric biosensor for lactate based on lactate dehydrogenase and Meldola Blue coimmobilized on multi-wall carbon-nanotube. Sensors Actuat. B Chem. 124, 269–276 (2007).

    CAS  Google Scholar 

  23. Suman, S. et al. Development of a lactate biosensor based on conducting copolymer bound lactate oxidase. Sensors Actuat. B Chem. 107, 768–772 (2005).

    CAS  Google Scholar 

  24. Gomes, S. P. et al. Application of lactate amperometric sol-gel biosensor to sequential injection determination of l-lactate. J. Pharm. Biomed. Anal. 43, 1376–1381 (2007).

    CAS  PubMed  Google Scholar 

  25. Zhao, Y., Takahashi-Yamashiro, K., Shen, Y. & Campbell, R. E. Quantification of intracellular citrate concentrations with genetically encoded biosensors. Methods Mol. Biol. 2564, 247–258 (2023).

    PubMed  Google Scholar 

  26. Ewald, J. C. et al. Engineering genetically encoded nanosensors for real-time in vivo measurements of citrate concentrations. PLoS One 6, e28245 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao, Y., Shen, Y., Wen, Y. & Campbell, R. E. High-performance intensiometric direct- and inverse-response genetically encoded biosensors for citrate. ACS Cent. Sci. 6, 1441–1450 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Akyilmaz, E. & Dinckaya, E. An amperometric microbial biosensor development based on Candida tropicalis yeast cells for sensitive determination of ethanol. Biosens. Bioelectron. 20, 1263–1269 (2005).

    CAS  PubMed  Google Scholar 

  29. Kunjapur, A. M. & Prather, K. L. J. Development of a vanillate biosensor for the vanillin biosynthesis pathway in E. coli. ACS Synth. Biol. 8, 1958–1967 (2019).

    CAS  PubMed  Google Scholar 

  30. Feng, J. et al. A general strategy to construct small molecule biosensors in eukaryotes. elife 4, e10606 (2015).

    PubMed  PubMed Central  Google Scholar 

  31. Bianchi-Smiraglia, A. et al. Internally ratiometric fluorescent sensors for evaluation of intracellular GTP levels and distribution. Nat. Methods 14, 1003–1009 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kochanowski, K. et al. Functioning of a metabolic flux sensor in Escherichia coli. Proc. Natl. Acad. Sci. USA 110, 1130–1135 (2013).

    CAS  PubMed  Google Scholar 

  33. Lehning, C. E., Siedler, S., Ellabaan, M. M. H. & Sommer, M. O. A. Assessing glycolytic flux alterations resulting from genetic perturbations in E. coli using a biosensor. Metab. Eng. 42, 194–202 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu, X. et al. Pyruvate-responsive genetic circuits for dynamic control of central metabolism. Nat. Chem. Biol. 16, 1261–1268 (2020).

    CAS  PubMed  Google Scholar 

  35. San Martin, A. et al. Imaging mitochondrial flux in single cells with a FRET sensor for pyruvate. PLoS ONE 9, e85780 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. Zhang, F., Carothers, J. M. & Keasling, J. D. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat. Biotechnol. 30, 354–359 (2012).

    CAS  PubMed  Google Scholar 

  37. Peters, G. et al. Development of N-acetylneuraminic acid responsive biosensors based on the transcriptional regulator NanR. Biotechnol. Bioeng. 115, 1855–1865 (2018).

    CAS  PubMed  Google Scholar 

  38. Plumbridge, J. Regulation of gene expression in the PTS in Escherichia coli: the role and interactions of Mlc. Curr. Opin. Microbiol. 5, 187–193 (2002).

    CAS  PubMed  Google Scholar 

  39. Tchieu, J. H., Norris, V., Edwards, J. S. & Saier, M. H. Jr. The complete phosphotransferase system in Escherichia coli. J. Mol. Microbiol. Biotechnol. 3, 329–346 (2001).

    CAS  PubMed  Google Scholar 

  40. Jiang, S. et al. Reconstructing a recycling and nonauxotroph biosynthetic pathway in Escherichia coli toward highly efficient production of l-citrulline. Metab. Eng. 68, 220–231 (2021).

    CAS  PubMed  Google Scholar 

  41. Moriya, H. & Johnston, M. Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. Proc. Natl. Acad. Sci. USA 101, 1572–1577 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Brink, D. P., Borgstrom, C., Tueros, F. G. & Gorwa-Grauslund, M. F. Real-time monitoring of the sugar sensing in Saccharomyces cerevisiae indicates endogenous mechanisms for xylose signaling. Microb. Cell Fact. 15, 183 (2016).

    PubMed  PubMed Central  Google Scholar 

  43. Tan, S. I. & Ng, I. S. CRISPRi-mediated nimply logic gate for fine-tuning the whole-cell sensing toward simple urine glucose detection. ACS Synth. Biol. 10, 412–421 (2021).

    CAS  PubMed  Google Scholar 

  44. Hosono, K., Kakuda, H. & Ichihara, S. Decreasing accumulation of acetate in a rich medium by Escherichia coli on introduction of genes on a multicopy plasmid. Biosci. Biotechnol. Biochem. 59, 256–261 (1995).

    CAS  PubMed  Google Scholar 

  45. Pradhanang, V. & Ghimire, S. Hirsutism: a rare presentation of an adult granulosa cell tumor of ovary. Nepal Med. Coll. J. 7, 152–154 (2005).

    PubMed  Google Scholar 

  46. Plumbridge, J. DNA binding sites for the Mlc and NagC proteins: regulation of nagE, encoding the N-acetylglucosamine-specific transporter in Escherichia coli. Nucleic Acids Res. 29, 506–514 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nam, T. W. et al. Analyses of Mlc-IIBGlc interaction and a plausible molecular mechanism of Mlc inactivation by membrane sequestration. Proc. Natl. Acad. Sci. USA 105, 3751–3756 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nam, T. W. et al. The Escherichia coli glucose transporter enzyme IICBGlc recruits the global repressor Mlc. EMBO J. 20, 491–498 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee, S. J., Boos, W., Bouche, J. P. & Plumbridge, J. Signal transduction between a membrane-bound transporter, PtsG, and a soluble transcription factor, Mlc, of Escherichia coli. EMBO J. 19, 5353–5361 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Luker, K. E. et al. Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living animals. Proc. Natl. Acad. Sci. USA 101, 12288–12293 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lim, J. H. & Jung, G. Y. A simple method to control glycolytic flux for the design of an optimal cell factory. Biotechnol. Biofuels 10, 160 (2017).

    PubMed  PubMed Central  Google Scholar 

  52. Tanaka, Y., Kimata, K. & Aiba, H. A novel regulatory role of glucose transporter of Escherichia coli: membrane sequestration of a global repressor Mlc. EMBO J. 19, 5344–5352 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Morita, T., Maki, K. & Aiba, H. RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev. 19, 2176–2186 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Vanderpool, C. K. & Gottesman, S. Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system. Mol. Microbiol. 54, 1076–1089 (2004).

    CAS  PubMed  Google Scholar 

  55. Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 25, 1203–1210 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kikuchi, A. M., Tanabe, A. & Iwahori, Y. A systematic review of the effect of l-tryptophan supplementation on mood and emotional functioning. J. Diet. Suppl. 18, 316–333 (2021).

    CAS  PubMed  Google Scholar 

  57. Shen, T. et al. Improved production of tryptophan in genetically engineered Escherichia coli with TktA and PpsA overexpression. J. Biomed. Biotechnol. 2012, 605219 (2012).

    PubMed  PubMed Central  Google Scholar 

  58. Liu, Q. et al. Rewiring carbon metabolism in yeast for high level production of aromatic chemicals. Nat. Commun. 10, 4976 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Flores, N. et al. Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat. Biotechnol. 14, 620–623 (1996).

    CAS  PubMed  Google Scholar 

  60. Bornemann, S. Flavoenzymes that catalyse reactions with no net redox change. Nat. Prod. Rep. 19, 761–772 (2002).

    CAS  PubMed  Google Scholar 

  61. Stahmann, K. P., Revuelta, J. L. & Seulberger, H. Three biotechnical processes using Ashbya gossypii, Candida famata or Bacillus subtilis compete with chemical riboflavin production. Appl. Microbiol. Biotechnol. 53, 509–516 (2000).

    CAS  PubMed  Google Scholar 

  62. Lin, Z. et al. Metabolic engineering of Escherichia coli for the production of riboflavin. Microb. Cell Fact. 13, 104 (2014).

    PubMed  PubMed Central  Google Scholar 

  63. Wang, Z. et al. Enhancement of riboflavin production with Bacillus subtilis by expression and site-directed mutagenesis of zwf and gnd gene from Corynebacterium glutamicum. Bioresour. Technol. 102, 3934–3940 (2011).

    CAS  PubMed  Google Scholar 

  64. Zhou, S. et al. Production of optically pure d-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110. Appl. Environ. Microbiol. 69, 399–407 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ylinen, A. et al. Production of d-lactic acid containing polyhydroxyalkanoate polymers in yeast Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 48, kuab028 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ma, Y. et al. Recombinant Escherichia coli for producing d-lactate and use thereof. US patent US9944957B2 (2018).

  67. Wang, Q. et al. Expression of galactose permease and pyruvate carboxylase in Escherichia coli ptsG mutant increases the growth rate and succinate yield under anaerobic conditions. Biotechnol. Lett. 28, 89–93 (2006).

    PubMed  Google Scholar 

  68. Lara, A. R. et al. Utility of an Escherichia coli strain engineered in the substrate uptake system for improved culture performance at high glucose and cell concentrations: an alternative to fed-batch cultures. Biotechnol. Bioeng. 99, 893–901 (2008).

    CAS  PubMed  Google Scholar 

  69. Death, A. & Ferenci, T. Between feast and famine: endogenous inducer synthesis in the adaptation of Escherichia coli to growth with limiting carbohydrates. J. Bacteriol. 176, 5101–5107 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ferenci, T. Adaptation to life at micromolar nutrient levels: the regulation of Escherichia coli glucose transport by endoinduction and cAMP. FEMS Microbiol. Rev. 18, 301–317 (1996).

    CAS  PubMed  Google Scholar 

  71. Ding, D. Q., Zhu, Y. R., Bai, D. Y., Wan, T. X., Lee, S. Y. & Zhang, D. W. Monitoring and dynamically controlling glucose uptake rate and central metabolism. figshare https://doi.org/10.6084/m9.figshare.24790872 (2025).

Download references

Acknowledgements

S.Y.L. served as the chairman of the scientific advisory board of the Tianjin Institute of Industrial Biotechnology. D.D. was supported by the National Key R&D Program of China (2021YFC2100900), National Nature Science Foundation of China (32100062), the Postdoctoral Science Foundation of China (2021M703438) and Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project (TSBICIP-CXRC-029). D.Z. was supported by the National Science Fund for Distinguished Young Scholars (22325807), the National Nature Science Foundation of China (22178372) and the Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project (TSBICIP-CXRC-055). S.Y.L. was supported by the Development of Platform Technologies of Microbial Cell Factories for the Next-Generation Biorefineries Project (2022M3J5A1056117) of the National Research Foundation supported by the Korean Ministry of Science and ICT. We thank T. Chen for plasmid p20C-Bsrib and X. Zhang for strain Lac04. We thank J. Shen for SPR technology assistance, Z. Zhang for MS contributions and L. Qi for flow cytometry expertise.

Author information

Authors and Affiliations

Authors

Contributions

D.D., SY.L. and D.Z. initiated the project and designed the experiments. D.D., Y.Z., D.B. and T.W. performed the experiments. D.D., Y.Z., SY.L. and D.Z. wrote the manuscript.

Corresponding authors

Correspondence to Sang Yup Lee or Dawei Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Wilfred Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18, Supplementary Tables 1–4 and Source data file of Fig. 3 in the main text.

Reporting Summary

Supplementary Data 1

Source data for Supplementary Fig. 4.

Supplementary Data 2

Source data for Supplementary Fig. 5.

Supplementary Data 3

Source data for Supplementary Fig. 7.

Supplementary Data 4

Source data for Supplementary Fig. 8.

Supplementary Data 5

Source data for Supplementary Fig. 9.

Supplementary Data 6

Source data for Supplementary Fig. 10.

Supplementary Data 7

Source data for Supplementary Fig. 11.

Supplementary Data 8

Source data for Supplementary Fig. 12.

Supplementary Data 9

Source data for Supplementary Fig. 13.

Supplementary Data 10

Source data for Supplementary Fig. 14.

Supplementary Data 11

Source data for Supplementary Fig. 15.

Supplementary Data 12

Source data for Supplementary Fig. 16.

Supplementary Data 13

Source data for Supplementary Fig. 17.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, D., Zhu, Y., Bai, D. et al. Monitoring and dynamically controlling glucose uptake rate and central metabolism. Nat Chem Eng 2, 50–62 (2025). https://doi.org/10.1038/s44286-024-00163-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44286-024-00163-w

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research