Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Automated processing and transfer of two-dimensional materials with robotics

Abstract

Chemical vapor deposition (CVD) has enabled two-dimensional (2D) materials and their heterostructures to become promising material platforms for next-generation electronics and photonic devices. However, the robust processing of 2D materials produced by CVD is currently hindered by the lack of a scalable and reliable technique to transfer materials from their growth substrates to target substrates for end applications. Here we introduced an automated system to enable the transfer of CVD-grown 2D materials with robotics by engineering the interfacial adhesion and strain. The developed automated transfer system shows industrial compatibility, as demonstrated by the high production capability (up to 180 wafers per day), reliable transfer quality (with transferred graphene carrier mobilities over 14,000 cm2 V−1 s−1), and high uniformity and repeatability of the transferred materials. The developed system also outperforms conventional manual transfer methods in terms of minimizing cost and environmental impact. This automated system could accelerate the research and commercialization of 2D materials in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of industrial production, transfer and commercial applications of 2D materials.
Fig. 2: Fracture mechanics in the delamination process and the engineering of supporting Al films for solution-free transfer.
Fig. 3: Automated transfer process system with robotics built in-house.
Fig. 4: Reliability and reproducibility of the transferred 2D materials.
Fig. 5: LCA of the graphene transfer process.

Similar content being viewed by others

Data availability

A more complete set of data including the code is accessible via figshare at https://doi.org/10.6084/m9.figshare.27896352 (ref. 65). Source data are provided with this paper.

Code availability

Code associated with the automated spin-coating machine and the automated lamination and delamination machine is available via figshare at https://doi.org/10.6084/m9.figshare.27896352 (ref. 65).

References

  1. Sun, Z., Martinez, A. & Wang, F. Optical modulators with 2D layered materials. Nat. Photon. 10, 227–238 (2016).

    Article  CAS  Google Scholar 

  2. Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Kim, S. E. et al. Extremely anisotropic van der Waals thermal conductors. Nature 597, 660–665 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dai, Z., Liu, L. & Zhang, Z. Strain engineering of 2D materials: issues and opportunities at the interface. Adv. Mater. 31, 1805417 (2019).

    Article  CAS  Google Scholar 

  6. Montblanch, A. R.-P., Barbone, M., Aharonovich, I., Atatüre, M. & Ferrari, A. C. Layered materials as a platform for quantum technologies. Nat. Nanotechnol. 18, 555–571 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Novoselov, K., Mishchenko, A., Carvalho, A. & Castro Neto, A. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Maleki, A. et al. Biomedical applications of MXene‐integrated composites: regenerative medicine, infection therapy, cancer treatment, and biosensing. Adv. Funct. Mater. 32, 2203430 (2022).

    Article  CAS  Google Scholar 

  9. Lemme, M. C., Akinwande, D., Huyghebaert, C. & Stampfer, C. 2D materials for future heterogeneous electronics. Nat. Commun. 13, 1392 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, W. et al. Clean assembly of van der Waals heterostructures using silicon nitride membranes. Nat. Electron. 6, 981–990 (2023).

    Article  CAS  Google Scholar 

  11. Liu, L. et al. Ultrashort vertical-channel MoS2 transistor using a self-aligned contact. Nat. Commun. 15, 165 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lin, L., Peng, H. & Liu, Z. Synthesis challenges for graphene industry. Nat. Mater. 18, 520–524 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Chen, T.-A. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 579, 219–223 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Ma, K. Y. et al. Epitaxial single-crystal hexagonal boron nitride multilayers on Ni (111). Nature 606, 88–93 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Li, L. et al. Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control. Nat. Commun. 15, 1825 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Nakatani, M. et al. Ready-to-transfer two-dimensional materials using tunable adhesive force tapes. Nat. Electron. 7, 119–130 (2024).

    Article  Google Scholar 

  18. Satterthwaite, P. F. et al. Van der Waals device integration beyond the limits of van der Waals forces using adhesive matrix transfer. Nat. Electron. 7, 17–28 (2024).

    Article  CAS  Google Scholar 

  19. Yuan, G. et al. Stacking transfer of wafer-scale graphene-based van der Waals superlattices. Nat. Commun. 14, 5457 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shin, J. et al. Vertical full-colour micro-LEDs via 2D materials-based layer transfer. Nature 614, 81–87 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Zhao, Y. et al. Large-area transfer of two-dimensional materials free of cracks, contamination and wrinkles via controllable conformal contact. Nat. Commun. 13, 4409 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu, Z. et al. Rapid and scalable transfer of large‐area graphene wafers. Adv. Mater. 35, 2300621 (2023).

    Article  CAS  Google Scholar 

  23. Dai, Z. & Padture, N. P. Challenges and opportunities for the mechanical reliability of metal halide perovskites and photovoltaics. Nat. Energy 8, 1319–1327 (2023).

    Article  Google Scholar 

  24. Jambhapuram, M., Good, J. K. & Azoug, A. Finite element investigation of lamination-induced curl due to residual stresses. Forces Mech. 4, 100034 (2021).

    Article  Google Scholar 

  25. Kim, C. et al. Damage-free transfer mechanics of 2-dimensional materials: competition between adhesion instability and tensile strain. NPG Asia Mater. 13, 44 (2021).

    Article  CAS  Google Scholar 

  26. Kim, J. et al. Layer-resolved graphene transfer via engineered strain layers. Science 342, 833–836 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Luo, D. et al. Role of graphene in water-assisted oxidation of copper in relation to dry transfer of graphene. Chem. Mater. 29, 4546–4556 (2017).

    Article  CAS  Google Scholar 

  28. Gao, L. et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 3, 699 (2012).

    Article  PubMed  Google Scholar 

  29. Chen, S. et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 5, 1321–1327 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Kashyap, P. K., Sharma, I. & Gupta, B. K. Continuous growth of highly reproducible single-layer graphene deposition on Cu foil by indigenously developed LPCVD setup. ACS Omega 4, 2893–2901 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hong, N. et al. Roll-to-roll dry transfer of large-scale graphene. Adv. Mater. 34, 2106615 (2022).

    Article  CAS  Google Scholar 

  32. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, L. et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 605, 69–75 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, J. et al. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nat. Nanotechnol. 17, 33–38 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Hong, J. Y. et al. A rational strategy for graphene transfer on substrates with rough features. Adv. Mater. 28, 2382–2392 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Park, H. et al. Analytic model of spalling technique for thickness-controlled separation of single-crystalline semiconductor layers. Solid State Electron. 163, 107660 (2020).

    Article  CAS  Google Scholar 

  37. Kim, H. et al. Graphene nanopattern as a universal epitaxy platform for single-crystal membrane production and defect reduction. Nat. Nanotechnol. 17, 1054–1059 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Chen, L. et al. Fully automatic transfer and measurement system for structural superlubric materials. Nat. Commun. 14, 6323 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Automate and digitize. Nat. Synth. 2, 459 (2023).

  40. Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ryu, S. et al. Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate. Nano Lett. 10, 4944–4951 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Petrone, N. et al. Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene. Nano Lett. 12, 2751–2756 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Lee, J. E., Ahn, G., Shim, J., Lee, Y. S. & Ryu, S. Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 3, 1024 (2012).

    Article  PubMed  Google Scholar 

  45. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Ago, H. et al. Controlled van der Waals epitaxy of monolayer MoS2 triangular domains on graphene. ACS Appl. Mater. Interfaces 7, 5265–5273 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Shi, Y. et al. van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12, 2784–2791 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Rao, R. et al. Spectroscopic evaluation of charge-transfer doping and strain in graphene/MoS2 heterostructures. Phys. Rev. B 99, 195401 (2019).

    Article  CAS  Google Scholar 

  50. Shih, C.-J. et al. Tuning on–off current ratio and field-effect mobility in a MoS2–graphene heterostructure via Schottky barrier modulation. ACS Nano 8, 5790–5798 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Pescetelli, S. et al. Integration of two-dimensional materials-based perovskite solar panels into a stand-alone solar farm. Nat. Energy 7, 597–607 (2022).

    Article  Google Scholar 

  52. Hauschild, M. Z. et al. Identifying best existing practice for characterization modeling in life cycle impact assessment. Int. J. Life Cycle Assess. 18, 683–697 (2013).

    Article  CAS  Google Scholar 

  53. Bueno, C., Hauschild, M. Z., Rossignolo, J. A., Ometto, A. R. & Mendes, N. C. Sensitivity analysis of the use of Life Cycle Impact Assessment methods: a case study on building materials. J. Clean. Prod. 112, 2208–2220 (2016).

    Article  Google Scholar 

  54. Yang, P. et al. Highly reproducible epitaxial growth of wafer-scale single-crystal monolayer MoS2 on sapphire. Small Methods 7, 2300165 (2023).

    Article  CAS  Google Scholar 

  55. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  56. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  57. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  58. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Lanthony, C. et al. On the early stage of aluminum oxidation: an extraction mechanism via oxygen cooperation. J. Chem. Phys. 137, 094707 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Park, Y. et al. Critical role of surface termination of sapphire substrates in crystallographic epitaxial growth of MoS2 using inorganic molecular precursors. ACS Nano 17, 1196–1205 (2023).

    Article  CAS  Google Scholar 

  61. Yeh, L. et al. The dependence of the performance of strained NMOSFETs on channel width. IEEE Trans. Electron Devices 56, 2848–2852 (2009).

    Article  CAS  Google Scholar 

  62. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  63. Wang, V., Xu, N., Liu, J.-C., Tang, G. & Geng, W.-T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).

    Article  CAS  Google Scholar 

  64. Berland, K. & Hyldgaard, P. Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional. Phys. Rev. B 89, 035412 (2014).

    Article  Google Scholar 

  65. Zhao, Y. et al. Automated processing and transfer of two-dimensional materials with robotics. figshare https://doi.org/10.6084/m9.figshare.27896352 (2025).

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (nos T2188101 and 52372038) and the National Key Research and Development Program of China (nos 2024YFE0202200, 2022YFA1204900 and 2023YFB3609900), Science and Technology Development Fund, Macau SAR (0107/2024/AMJ). We acknowledge the Molecular Materials and Nanofabrication Laboratory (MMNL) in the College of Chemistry and Peking Nanofab, Peking University, for the use of instruments, and thank the Materials Processing and Analysis Center, Peking University, for assistance with Raman characterization.

Author information

Authors and Affiliations

Authors

Contributions

L.L. and Z.L. conceived the experiment. L.L., Z.L. and B.M. supervised the project. Y. Zhao, J.L., Z.H., Q.Z., G.C., Q.L., M.S. and B.G. conducted the transfer of 2D materials onto the target substrates. Y. Zhao, Z.H., Q.Z. and Q.X. took and analyzed the OM, X-ray photoelectron spectroscopy, scanning electron microscopy and AFM data. J.L. and Y. Zhao conducted the Raman and PL measurements on the transferred 2D materials. Y. Zhao and J.L. performed the device fabrication and electrical measurements. Y. Zhao and G.W. conducted the film stress measurement. S.B. conducted the calculation of adhesion energies. Y. Zhao and Z.H. conducted the transmission electron microscopy characterization and analysis. K.J. conducted the CVD growth of graphene. J.H. and Y. Zhang conducted the growth of MoS2. Y. Zhao, B.M., E.E. and M.G. conducted the LCA and technoeconomic analyses. All authors discussed the results and wrote the paper.

Corresponding authors

Correspondence to Boyang Mao, Li Lin or Zhongfan Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Timothy J. Booth, Kuangye Lu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–23 and Tables 1–12.

Supplementary Video 1

Manual-bubbling-based wet transfer process works with the assistance of PMMA.

Supplementary Video 2

Manual transfer including the polycarbonate-assisted exfoliation of graphene from a growth substrate and the removal of polycarbonate by chloroform.

Supplementary Video 3

Automated spin-coating process based on the automated spin coater built in-house.

Supplementary Video 4

Lamination and delamination processes based on the automated laminating and delaminating machine built in-house.

Supplementary Video 5

Lamination and delamination processes based on the automated laminating and delaminating machine for the transfer of a 4-inch MoS2.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Liao, J., Bu, S. et al. Automated processing and transfer of two-dimensional materials with robotics. Nat Chem Eng 2, 296–308 (2025). https://doi.org/10.1038/s44286-025-00227-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44286-025-00227-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing