Abstract
Optical metasurfaces are judiciously nanostructured thin films capable of manipulating the flow of light in a myriad of new ways. During the past two decades, we have witnessed a true revolution in the basic science that underlies their operation. As a result, these powerful optical elements can now deliver never-seen-before optical functions and transformed the way we think about light–matter interaction at the nanoscale. They also offer a favourable size, weight, power and cost metric compared to bulky optical elements such as lenses and prisms based on polished pieces of glass or moulded plastics. These valuable traits are especially relevant for use in many emerging applications, including wearable displays and sensors, autonomous navigation (robotics, automotive and aerospace), computational imaging, solar energy harvesting and radiative cooling. With the advent of advanced software and high-volume manufacturing processes, the promise of metasurfaces is becoming a practical reality and has already generated tremendous interest from industry. This Review discusses the rapid, recent advances towards transitioning metasurface science into real technologies, propelling the second metasurface revolution.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
118,99 € per year
only 9,92 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Chen, F. T. & Craighead, H. G. Diffractive phase elements based on two-dimensional artificial diffractive phase elements based on two-dimensional artificial dielectrics. Opt. Lett. 20, 121 (1995).
Smith, R. E., Warren, M. E., Wendt, J. R. & Vawter, G. A. Polarization-sensitive subwavelength antireflection surfaces on a semiconductor for 975 nm. Opt. Lett. 21, 1201–1203 (1996).
Chen, F. T. & Craighead, H. G. Diffractive lens fabricated with mostly zeroth-order gratings. Opt. Lett. 21, 177–179 (1996).
Lalanne, P., Astilean, S., Chavel, P., Cambril, E. & Launois, H. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt. Lett. 23, 1081 (1998).
Pancharatnam, S. Generalized theory of interference and its applications. Proc. Indian Acad. Sci. A44, 247–262 (1956).
Berry, M. V. The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt. 34, 1401–1407 (1987).
Bomzon, Z., Kleiner, V. & Hasman, E. Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings. Appl. Phys. Lett. 79, 1587 (2001).
Bomzon, Z., Biener, G., Kleiner, V. & Hasman, E. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 27, 1141–1143 (2002).
Hasman, E., Kleiner, V., Biener, G. & Niv, A. Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics. Appl. Phys. Lett. 82, 328–330 (2003).
Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).
Ni, X., Emani, N. K., Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Broadband light bending with plasmonic nanoantennas. Science 335, 427 (2012).
Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).
Yu, Y. F. et al. High-transmission dielectric metasurface with 2π phase control at visible wavelengths. Laser Photonics Rev. 9, 412–418 (2015).
Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, 1983).
Bharadwaj, P., Deutsch, B. & Novotny, L. Optical antennas. Adv. Opt. Photonics 1, 438–483 (2009).
Bozhevolnyi, S. I. & Søndergaard, T. General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. Opt. Express 15, 10869–10877 (2007).
Landreman, P. E., Chalabi, H., Park, J. & Brongersma, M. L. Fabry-Perot description for Mie resonances of rectangular dielectric nanowire optical resonators. Opt. Express 24, 29760–29772 (2016).
Taminiau, T. H., Stefani, F. D. & van Hulst, N. F. Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes. Nano Lett. 11, 1020–1024 (2011).
Novotny, L. Effective wavelength scaling for optical antennas. Phys. Rev. Lett. 98, 266802 (2007).
Larouche, S. & Smith, D. R. Reconciliation of generalized refraction with diffraction theory. Opt. Lett. 37, 2391 (2012).
Yu, N. & Capasso, F. Flat optics: controlling wavefronts with optical antenna metasurfaces. IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).
Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).
Molesky, S. et al. Inverse design in nanophotonics. Nat. Photonics 12, 659–670 (2018).
Fan, J. A. Freeform metasurface design based on topology optimization. MRS Bull. 45, 196–201 (2020).
Jensen, J. S. & Sigmund, O. Topology optimization for nano-photonics. Laser Photonics Rev. 5, 308–321 (2011).
Chen, W. T., Zhu, A. Y. & Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. 5, 604–620 (2020).
Maguid, E. et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 352, 1202–1206 (2016).
Kamali, S. M. et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles. Phys. Rev. X 7, 041056 (2017).
Maguid, E. et al. Multifunctional interleaved geometric-phase dielectric metasurfaces. Light Sci. Appl. 6, e17027 (2017).
Khorasaninejad, M. & Capasso, F. Metalenses: versatile multifunctional photonic components. Science 358, eaam8100 (2017).
Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).
Rubin, N. A. et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, eaax1839 (2019).
Lee, G. et al. Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale 10, 4237–4245 (2018).
Paniagua-Domínguez, R. et al. A metalens with a near-unity numerical aperture. Nano Lett. 18, 2124–2132 (2018).
Liang, H. et al. Ultrahigh numerical aperture metalens at visible wavelengths. Nano Lett. 18, 4460–4466 (2018).
Chen, W. T., Ibrahim, Y., Zhu, A. Y. & Capasso, F. Hybrid metasurface-refractive lenses. In Proc. Optical Design and Fabrication 2019 (Freeform, OFT) https://doi.org/10.1364/OFT.2019.OT2A.4 (Optica Publishing Group, 2019).
Sanjeev, V. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2017).
Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).
Shrestha, S., Overvig, A. C., Lu, M., Stein, A. & Yu, N. Broadband achromatic dielectric metalenses. Light Sci. Appl. 7, 85 (2018).
Wang, S. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018).
Li, G., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017).
Krasnok, A., Tymchenko, M. & Alù, A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater. Today 21, 8–21 (2018).
Ni, X., Kildishev, A. V. & Shalaev, V. M. Metasurface holograms for visible light. Nat. Commun. 4, 2807 (2013).
Zheng, G. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015).
Huang, Y. W. et al. Aluminum plasmonic multicolor meta-hologram. Nano Lett. 15, 3122–3127 (2015).
Feng, H. et al. Spin-switched three-dimensional full-color scenes based on a dielectric meta-hologram. ACS Photonics 6, 2910–2916 (2019).
Lin, R. J. et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 14, 227–231 (2019).
Holsteen, A. L., Lin, D., Kauvar, I., Wetzstein, G. & Brongersma, M. L. A light-field metasurface for high-resolution single-particle tracking. Nano Lett. 19, 2267–2271 (2019).
Engheta, N., Salandrino, A. & Alù, A. Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. Phys. Rev. Lett. 95, 95504 (2005).
Zeitner, U. D. et al. High performance diffraction gratings made by e-beam lithography. Appl. Phys. A Mater. Sci. Process. 109, 789–796 (2012).
Park, J. et al. All-glass 100 mm diameter visible metalens for imaging the cosmos. ACS Nano 18, 3187–3198 (2024).
Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010).
Esfandyarpour, M., Garnett, E., Cui, Y., McGehee, M. D. & Brongersma, M. L. B. Metamaterial mirrors in optoelectronic devices. Nat. Nanotechnol. 9, 542–547 (2014).
Kim, S. J. et al. Superabsorbing, artificial metal films constructed from semiconductor nanoantennas. Nano Lett. 16, 3801–3808 (2016).
Kim, S. J. et al. Light trapping for solar fuel generation with Mie resonances. Nano Lett. 14, 1446–1452 (2014).
Kempa, T. J., Day, R. W., Kim, S.-K., Park, H.-G. & Lieber, C. M. Semiconductor nanowires: a platform for exploring limits and concepts for nano-enabled solar cells. Energy Environ. Sci. 6, 719 (2013).
Kim, S. J. et al. Anti-Hermitian photodetector facilitating efficient subwavelength photon sorting. Nat. Commun. 9, 316 (2018).
Pors, A., Nielsen, M. G. & Bozhevolnyi, S. I. Plasmonic metagratings for simultaneous determination of Stokes parameters. Optica 2, 716–723 (2015).
Balthasar Mueller, J. P., Leosson, K. & Capasso, F. Ultracompact metasurface in-line polarimeter. Optica 3, 42–47 (2016).
Basiri, A. et al. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements. Light Sci. Appl. 8, 78 (2019).
Yokogawa, S., Burgos, S. P. & Atwater, H. A. Plasmonic color filters for CMOS image sensor applications. Nano Lett. 12, 4349–4354 (2012).
Brongersma, M. L. Plasmonic photodetectors, photovoltaics, and hot-electron devices. Proc. IEEE 104, 2349–2361 (2016).
McClung, A., Samudrala, S., Torfeh, M., Mansouree, M. & Arbabi, A. Snapshot spectral imaging with parallel metasystems. Sci. Adv. 6, eabc7646 (2020).
Cao, L. et al. Semiconductor nanowire optical antenna solar absorbers. Nano Lett. 10, 439–445 (2010).
Kim, S. J., Fan, P., Kang, J.-H. & Brongersma, M. L. Creating semiconductor metafilms with designer absorption spectra. Nat. Commun. 6, 7591 (2015).
Esfandyarpour, M., Curto, A. G., Kik, P. G., Engheta, N. & Brongersma, M. L. Optical emission near a high-impedance mirror. Nat. Commun. 9, 3324 (2018).
Vaskin, A., Kolkowski, R., Koenderink, A. F. & Staude, I. Light-emitting metasurfaces. Nanophotonics 8, 1151–1198 (2019).
Liu, S. et al. Light-emitting metasurfaces: simultaneous control of spontaneous emission and far-field radiation. Nano Lett. 18, 6906–6914 (2018).
Khaidarov, E. et al. Control of LED emission with functional dielectric metasurfaces. Laser Photonics Rev. 14, 1900235 (2020).
Iyer, P. P. et al. Unidirectional luminescence from InGaN/GaN quantum-well metasurfaces. Nat. Photonics 14, 543–548 (2020).
Spinelli, P., Verschuuren, M. A. & Polman, A. Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nat. Commun. 3, 692 (2012).
Neder, V., Luxembourg, S. L. & Polman, A. Efficient colored silicon solar modules using integrated resonant dielectric nanoscatterers. Appl. Phys. Lett. 111, 073902 (2017).
Lee, N., Xue, M., Hong, J., van de Groep, J. & Brongersma, M. L. Multi-resonant Mie resonator arrays for broadband light trapping in ultrathin c-Si solar cells. Adv. Mater. 2210941, 1–8 (2023).
Chang-Hasnain, C. J. High-contrast gratings as a new platform for integrated optoelectronics. Semicond. Sci. Technol. 26, 014043 (2011).
Xie, Y. Y. et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions. Nat. Nanotechnol. 15, 125–130 (2020).
Joo, W. J. et al. Metasurface-driven OLED displays beyond 10,000 pixels per inch. Science 370, 459–463 (2020).
Wills, S. Meta-mirror OLEDs smash through pixel-density limits. OPTICA https://www.optica-opn.org/home/newsroom/2020/october/meta-mirror_oleds_smash_through_pixel-density_limi/ (2020).
Aizenberg, J., Rogers, J. A., Paul, K. E. & Whitesides, G. M. Imaging profiles of light intensity in the near field: applications to phase-shift photolithography. Appl. Opt. 37, 2145–2152 (1998).
Qin, D., Xia, Y. & Whitesides, G. M. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 5, 491–502 (2010).
Kang, H. et al. Emerging low-cost, large-scale photonic platforms with soft lithography and self-assembly. Photonics Insights 2, R04 (2023).
Kooy, N., Mohamed, K., Pin, L. T. & Guan, O. S. A review of roll-to-roll nanoimprint lithography. Nanoscale Res. Lett. 9, 320 (2014).
Ahn, S. H. & Guo, L. J. High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Adv. Mater. 20, 2044–2049 (2008).
Kim, J. et al. Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible. Nat. Mater. 22, 474–481 (2023).
Battaglia, C. et al. Nanoimprint lithography for high-efficiency thin-film silicon solar cells. Nano Lett. 11, 661–665 (2011).
Garnett, E. C., Ehrler, B., Polman, A. & Alarcon-Llado, E. Photonics for photovoltaics: advances and opportunities. ACS Photonics 8, 61–70 (2021).
Ji, R. et al. UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing. Microelectron. Eng. 87, 963–967 (2010).
Yavas, O., Svedendahl, M. & Quidant, R. Unravelling the role of electric and magnetic dipoles in biosensing with Si nanoresonators. ACS Nano 13, 4582–4588 (2019).
Xuan, X., Yoon, H. S. & Park, J. Y. A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens. Bioelectron. 109, 75–82 (2018).
Chen, W. T. & Capasso, F. Will flat optics appear in everyday life anytime soon? Appl. Phys. Lett. 118, 100503 (2021).
Glovinski, C. and Markowitz, M. Metalenz and STMicroelectronics deliver world’s first optical metasurface technology for consumer electronics devices. STMicroelectronics https://newsroom.st.com/media-center/press-item.html/t4458.html (2022).
SPIE Europe. Lumotive launches ‘LM10’ optical beam-steering semiconductor. Optics.org https://optics.org/news/14/8/47 (2023).
Rangwala, S. Metalenz pioneers high volume semiconductor foundry-based lens manufacturing. Forbes https://www.forbes.com/sites/sabbirrangwala/2023/07/05/metalenz-pioneers-high-volume-semiconductor-foundry-based-lens-manufacturing/?sh=1577001b23bd (2023).
Leitgeb, M. et al. Multilength scale patterning of functional layers by roll-to-roll ultraviolet-light-assisted nanoimprint lithography. ACS Nano 10, 4926–4941 (2016).
Snieder, J., Dielen, M. & van Ostayen, R. A. J. Simulating the residual layer thickness in roll-to-plate nanoimprinting with tensioned webs. Micromachines 13, 461 (2022).
Wu, C.-L., Sung, C.-K., Yao, P.-H. & Chen, C.-H. Sub-15 nm linewidth gratings using roll-to-roll nanoimprinting and plasma trimming to fabricate flexible wire-grid polarizers with low colour shift. Nanotechnology 24, 265301 (2013).
Fattal, D. et al. A multi-directional backlight for a wide-angle, glasses-free three-dimensional display. Nature 495, 348–351 (2013).
Nanoimprint lithography semiconductor manufacturing system that covers diverse applications with simple patterning mechanism. Canon https://global.canon/en/news/2023/20231013.html (2023).
Park, J. B. et al. Transfer printing of vertical-type microscale light-emitting diode array onto flexible substrate using biomimetic stamp. Opt. Express 27, 6832–6841 (2019).
Chen, Y. et al. Reliable patterning, transfer printing and post-assembly of multiscale adhesion-free metallic structures for nanogap device applications. Adv. Funct. Mater. 30, 2002549 (2020).
Liu, H. et al. Transfer printing of solution-processed 3D ZnO nanostructures with ultra-high yield for flexible metasurface color filter. Adv. Mater. Interfaces 9, 2101963 (2022).
Kwak, M. K. & Lim, Y.-W. Multi-functional nanopatterned optical films fabricated using capillary force lithography. J. Colloid Interface Sci. 367, 460–466 (2012).
Hokari, R., Kurihara, K., Takada, N. & Hiroshima, H. Development of simple high-resolution embedded printing for transparent metal grid conductors. Appl. Phys. Lett. 111, 63107 (2017).
Colomban, P. The use of metal nanoparticles to produce yellow, red and iridescent colour, from bronze age to present times in lustre pottery and glass: solid state chemistry, spectroscopy and nanostructure. J. Nano Res. 8, 109–132 (2010).
Parker, A. R. & Townley, H. E. Biomimetics of photonic nanostructures. Nat. Nanotechnol. 2, 347–353 (2007).
Faraday, M. The Bakerian lecture: experimental relations of gold (and other metals) to light. Philos. Trans. 147, 145–181 (1857).
Oldenburg, S., Averitt, R., Westcott, S. L. & Halas, N. J. Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243–247 (1998).
Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010).
Cao, L., Fan, P., Barnard, E. S., Brown, A. M. & Brongersma, M. L. Tuning the color of silicon nanostructures. Nano Lett. 10, 2649–2654 (2010).
Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, eaag2472 (2016).
Li, Q., Wu, T., van de Groep, J., Lalanne, P. & Brongersma, M. Structural color from a coupled nanowire pair beyond the bonding and anti-bonding model. Optica 8, 464–470 (2021).
Kristensen, A. et al. Plasmonic colour generation. Nat. Rev. Mater. 2, 16088 (2016).
Lee, T., Jang, J., Jeong, H. & Rho, J. Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications. Nano Converg. 5, 1–21 (2018).
Kumar, K. et al. Printing colour at the optical diffraction limit. Nat. Nanotechnol. 7, 557–561 (2012).
Tan, S. J. et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett. 14, 4023–4029 (2014).
Roberts, A. S., Pors, A., Albrektsen, O. & Bozhevolnyi, S. I. Subwavelength plasmonic color printing protected for ambient use. Nano Lett. 14, 783–787 (2014).
Dong, Z. et al. Schrödinger’s red pixel by quasi-bound-states-in-the-continuum. Sci. Adv. 8, eabm4512 (2022).
Dong, Z. et al. Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space. Nano Lett. 17, 7620–7628 (2017).
Yang, W. et al. All-dielectric metasurface for high-performance structural color. Nat. Commun. 11, 1864 (2020).
Staude, I. et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 7, 7824–7832 (2013).
Goh, X. M. et al. Three-dimensional plasmonic stereoscopic prints in full colour. Nat. Commun. 5, 5361 (2014).
Cihan, A. F., Curto, A. G., Raza, S., Kik, P. G. & Brongersma, M. L. Silicon Mie resonators for highly directional emission from monolayer MoS2. Nat. Photonics 12, 284–291 (2018).
Vynck, K. et al. The visual appearances of disordered optical metasurfaces. Nat. Mater. 21, 1035–1041 (2022).
Lee, G. Y. et al. Metasurface eyepiece for augmented reality. Nat. Commun. 9, 4562 (2018).
Li, Z., Pestourie, R., Capasso, F. & Johnson, S. G. Inverse design enables high-performance meta-optics reshaping virtual reality. Nat. Commun. 13, 2409 (2022).
Born, B. et al. Off-axis metasurfaces for folded flat optics. Nat. Commun. 14, 5602 (2023).
Guo, C., Wang, H. & Fan, S. Squeeze free space with nonlocal flat optics. Optica 7, 1133–1138 (2020).
Reshef, O. et al. An optic to replace space and its application towards ultra-thin imaging systems. Nat. Commun. 12, 3512 (2021).
Gopakumar, M. et al. Full-colour 3D holographic augmented-reality displays with metasurface waveguides. Nature 629, 791–798 (2024).
Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, 374–377 (2019).
Eaves-Rathert, J. et al. Dynamic color tuning with electrochemically actuated TiO2 metasurfaces. Nano Lett. 22, 1626–1632 (2022).
Holsteen, A. L., Cihan, A. F. & Brongersma, M. L. Temporal color mixing and dynamic beam shaping with silicon metasurfaces. Science 365, 257–260 (2019).
Duan, X., Kamin, S. & Liu, N. Dynamic plasmonic colour display. Nat. Commun. 8, 14606 (2017).
Li, Q. et al. Metasurface optofluidics for dynamic control of light fields. Nat. Nanotechnol. 17, 1097–1103 (2022).
Song, M. et al. Enabling optical steganography, data storage, and encryption with plasmonic colors. Laser Photonics Rev. 15, 2000343 (2021).
Jang, J., Badloe, T. & Rho, J. Unlocking the future of optical security with metasurfaces. Light Sci. Appl. 10, 144 (2021).
Burgos, S. P., Yokogawa, S. & Atwater, H. A. Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal oxide semiconductor image sensor color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary. ACS Nano 7, 10038–10047 (2013).
Franklin, D., Frank, R., Wu, S. T. & Chanda, D. Actively addressed single pixel full-colour plasmonic display. Nat. Commun. 8, 1–10 (2017).
Altug, H., Oh, S. H., Maier, S. A. & Homola, J. Advances and applications of nanophotonic biosensors. Nat. Nanotechnol. 17, 5–16 (2022).
Zhang, S. et al. Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective. Front. Opt. Photonics 10, 265–299 (2021).
Qin, J. et al. Metasurface micro/nano-optical sensors: principles and applications. ACS Nano 16, 11598–11618 (2022).
Vázquez-Guardado, A. et al. DNA-modified plasmonic sensor for the direct detection of virus biomarkers from the blood. Nano Lett. 21, 7505–7511 (2021).
Gao, Z. et al. Machine-learning-assisted microfluidic nanoplasmonic digital immunoassay for cytokine storm profiling in COVID-19 patients. ACS Nano 15, 18023–18036 (2021).
Belushkin, A. et al. Rapid and digital detection of inflammatory biomarkers enabled by a novel portable nanoplasmonic imager. Small 16, 1906108 (2020).
Li, Z., Tian, X., Qiu, C. W. & Ho, J. S. Metasurfaces for bioelectronics and healthcare. Nat. Electron. 4, 382–391 (2021).
Wang, Y. et al. Wearable plasmonic-metasurface sensor for noninvasive and universal molecular fingerprint detection on biointerfaces. Sci. Adv. 7, eabe4553 (2021).
Xiong, Y. et al. Photonic crystal enhanced fluorescence emission and blinking suppression for single quantum dot digital resolution biosensing. Nat. Commun. 13, 4647 (2022).
Fothergill, S. M., Joyce, C. & Xie, F. Metal enhanced fluorescence biosensing: from ultra-violet towards second near-infrared window. Nanoscale 10, 20914–20929 (2018).
Semeniak, D., Cruz, D. F., Chilkoti, A. & Mikkelsen, M. H. Plasmonic fluorescence enhancement in diagnostics for clinical tests at point-of-care: a review of recent technologies. Adv. Mater. 35, 2107986 (2023).
Zang, F. et al. Ultrasensitive Ebola virus antigen sensing via 3D nanoantenna arrays. Adv. Mater. 31, 1902331 (2019).
Cruz, D. F. et al. Ultrabright fluorescence readout of an inkjet-printed immunoassay using plasmonic nanogap cavities. Nano Lett. 20, 4330–4336 (2020).
Ansaryan, S. et al. High-throughput spatiotemporal monitoring of single-cell secretions via plasmonic microwell arrays. Nat. Biomed. Eng. 7, 943–958 (2023).
Conteduca, D. et al. Dielectric nanohole array metasurface for high-resolution near-field sensing and imaging. Nat. Commun. 12, 3293 (2021).
Yesilkoy, F. et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics 13, 390–396 (2019).
Luo, Y. et al. Metasurface-based abrupt autofocusing beam for biomedical applications. Small Methods 6, 2101228 (2022).
Ji, A. et al. Quantitative phase contrast imaging with a nonlocal angle-selective metasurface. Nat. Commun. 13, 7848 (2022).
Khorasaninejad, M. et al. Multispectral chiral imaging with a metalens. Nano Lett. 16, 4595–4600 (2016).
Kwon, H., Arbabi, E., Kamali, S. M., Faraji-Dana, M. S. & Faraon, A. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nat. Photonics 14, 109–114 (2020).
Pahlevaninezhad, H. et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics 12, 540–547 (2018).
Langer, J. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 14, 28–117 (2020).
John-Herpin, A. et al. Metasurface-enhanced infrared spectroscopy: an abundance of materials and functionalities. Adv. Mater. 35, 2110163 (2023).
Xomalis, A. et al. Detecting mid-infrared light by molecular frequency upconversion in dual-wavelength nanoantennas. Science 374, 1268–1271 (2021).
Palermo, G. et al. Plasmonic metasurfaces based on pyramidal nanoholes for high-efficiency SERS biosensing. ACS Appl. Mater. Interfaces 13, 43715–43725 (2021).
Caldarola, M. A. et al. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nat. Commun. 6, 7915 (2015).
Oh, S. H. et al. Nanophotonic biosensors harnessing van der Waals materials. Nat. Commun. 12, 1–18 (2021).
Kavungal, D. et al. Artificial intelligence–coupled plasmonic infrared sensor for detection of structural protein biomarkers in neurodegenerative diseases. Sci. Adv. 9, eadg9644 (2023).
Wang, X. et al. Advances in information processing and biological imaging using flat optics. Nat. Rev. Electr. Eng. 1, 391–411 (2024).
Savastano, L. E. & Seibel, E. J. Scanning fiber angioscopy: a multimodal intravascular imaging platform for carotid atherosclerosis. Clin. Neurosurg. 64, 188–198 (2017).
Ren, H. et al. An achromatic metafiber for focusing and imaging across the entire telecommunication range. Nat. Commun. 13, 4183 (2022).
Xie, N. et al. Large field-of-view short-wave infrared metalens for scanning fiber endoscopy. J. Biomed. Opt. 28, 1–10 (2023).
Fröch, J. E. et al. Real time full-color imaging in a meta-optical fiber endoscope. eLight 3, 13 (2023).
Xie, N., Tanguy, Q. A. A., Fröch, J. E., Böhringer, K. F. & Majumdar, A. Spectrally-encoded non-scanning imaging through a fiber. ACS Photonics https://doi.org/10.1021/acsphotonics.3c01582 (2023).
Levene, H. J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003).
Liu, T. et al. Quantification of antibody avidities and accurate detection of SARS-CoV-2 antibodies in serum and saliva on plasmonic substrates. Nat. Biomed. Eng. 4, 1188–1196 (2020).
Buralli, D. A. & Morris, G. M. Design of a wide field diffractive landscape lens. Appl. Opt. 28, 3950–3959 (1989).
Kim, I. et al. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol. 16, 508–524 (2021).
Neshev, D. N. & Miroshnichenko, A. E. Enabling smart vision with metasurfaces. Nat. Photonics 17, 26–35 (2023).
Lin, D. et al. Photonic multitasking interleaved Si nanoantenna phased array. Nano Lett. 16, 7671–7676 (2016).
Shpunt, A. Optical designs for zero order reduction. WO patent 2009/093228 A2 (2009).
Mor, Z. Integrated structured-light projector comprising light-emitting elements on a substrate. US patent 9825425 B2 (2017).
Devlin, R. C., Latawiec, P. & Graff, J. Single element dot pattern projector. US patent 2022/0385042 A1 (2022/05/25 2022).
Hashemi, E., Francois, O. & Quaade, U. J. MOE-based dot and flood projector modules for 3D sensing applications. In Proc. Optica Imaging Congress (3D, COSI, DH, FLatOptics, IS, pcAOP) https://doi.org/10.1364/FLATOPTICS.2023.FW5D.2 (Optica Publishing Group, 2023).
Capasso, F. The future and promise of flat optics: a personal perspective. Nanophotonics 7, 953–957 (2018).
Pitruzzello, G. Metaoptics for the consumer market. Nat. Photonics 17, 6–7 (2023).
Jing, X. et al. Single-shot 3D imaging with point cloud projection based on metadevice. Nat. Commun. 13, 7842 (2022).
Kim, G. et al. Metasurface-driven full-space structured light for three-dimensional imaging. Nat. Commun. 13, 5920 (2022).
Li, Z. et al. Full-space cloud of random points with a scrambling metasurface. Light Sci. Appl. 7, 63 (2018).
Hsu, W. C., Chang, C. H., Hong, Y. H., Kuo, H. C. & Huang, Y. W. Compact structured light generation based on meta-hologram PCSEL integration. Discov. Nano 18, 87 (2023).
Huang, Y. W. et al. Gate-tunable conducting oxide metasurfaces. Nano Lett. 16, 5319–5325 (2016).
Thureja, P. et al. Toward a universal metasurface for optical imaging, communication, and computation. Nanophotonics 11, 3745–3768 (2022).
Shirmanesh, G. K., Sokhoyan, R., Wu, P. C. & Atwater, H. A. Electro-optically tunable multifunctional metasurfaces. ACS Nano 14, 6912–6920 (2020).
Park, J. et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat. Nanotechnol. 16, 69–76 (2021).
Gleb, A. M., Yang, Y. & Bowen, P. Tunable liquid crystal metasurfaces. WO patent 2020/190704 A1 (2020).
Akselrod, G. M., Iyer, P. P. & Ross, D. U. Lidar systems based on tunable optical metasurfaces. US patent 11644546 B2 (2023).
Akselrod, G. M., Josberger, E. E. & Weidman, M. C. Fabrication of metallic optical metasurfaces. US patent 10968522 B2 (2021).
Gorelick, S., Guzenko, V. A., Vila-Comamala, J. & David, C. Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating. Nanotechnology 21, 295303 (2010).
Knack, S. Copper-related defects in silicon. Mater. Sci. Semicond. Process. 7, 125–141 (2004).
Li, S.-Q. et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364, 1087–1090 (2019).
Chen, C., Seff, A., Kornhauser, A. & Xiao, J. DeepDriving: learning affordance for direct perception in autonomous driving. In Proc. 2015 IEEE International Conference on Computer Vision 2722–2730 (IEEE, 2015).
Gigan, S. et al. Roadmap on wavefront shaping and deep imaging in complex media. J. Phys. Photonics 4, 042501 (2022).
Sitzmann, V. et al. End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging. ACM Trans. Graph. 37, 1–13 (2018).
Sun, Q., Wang, C., Fu, Q., Dun, X. & Heidrich, W. End-to-end complex lens design with differentiate ray tracing. ACM Trans. Graph. 40, 1–13 (2021).
Pitilakis, A. et al. Software-defined metasurface paradigm: concept, challenges, prospects. In Proc. 12th International Congress on Artificial Materials for Novel Wave Phenomena, METAMATERIALS 2018 483–485 (IEEE, 2018).
Hunt, J. et al. Metamaterial apertures for computational imaging. Science 339, 310–313 (2013).
Presutti, F. & Monticone, F. Focusing on bandwidth: achromatic metalens limits. Optica 7, 624–631 (2020).
Tseng, E. et al. Neural nano-optics for high-quality thin lens imaging. Nat. Commun. 12, 6493 (2021).
Pinilla, S. et al. Miniature color camera via flat hybrid meta-optics. Sci. Adv. 9, eadg7297 (2023).
Fröch, J. E. et al. Beating bandwidth limits for large aperture broadband nano-optics. Preprint at https://doi.org/10.48550/arXiv.2402.06824 (2024).
Chen, J. et al. Planar wide-angle-imaging camera enabled by metalens array. Optica 9, 431–437 (2022).
Zhao, F. et al. Synthetic aperture metalens. Photonics Res. 9, 2388–2397 (2021).
Guo, Q. et al. Compact single-shot metalens depth sensors inspired by eyes of jumping spiders. Proc. Natl Acad. Sci. USA 116, 22959–22965 (2019).
Saragadam, V. et al. Foveated thermal computational imaging in the wild using all-silicon meta-optics. Preprint at https://doi.org/10.48550/arXiv.2212.06345 (2022).
Lu, G. & Fei, B. Medical hyperspectral imaging: a review. J. Biomed. Opt. 19, 010901 (2014).
Lowe, A., Harrison, N. & French, A. P. Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods 13, 80 (2017).
Faraji-Dana, M. S. et al. Compact folded metasurface spectrometer. Nat. Commun. 9, 4196 (2018).
Fröch, J. E. et al. Dual band computational infrared spectroscopy via large aperture meta-optics. ACS Photonics 10, 986–992 (2023).
Lin, Z. et al. End-to-end metasurface inverse design for single-shot multi-channel imaging. Opt. Express 30, 28358–28370 (2022).
Arguello, H. et al. Shift-variant color-coded diffractive spectral imaging system. Optica 8, 1424–1434 (2021).
Colburn, S., Majumdar, A. & Majumdar, A. Metasurface generation of paired accelerating and rotating optical beams for passive ranging and scene reconstruction. ACS Photonics 7, 1529–1536 (2020).
Tan, S., Yang, F., Boominathan, V., Veeraraghavan, A. & Naik, G. V. 3D imaging using extreme dispersion in optical metasurfaces. ACS Photonics 8, 1421–1429 (2022).
Zheng, H. et al. Meta-optic accelerators for object classifiers. Sci. Adv. 8, eabo6410 (2022).
Tsai, C.-C., Wu, Z., Huang, X., Yu, Z. & Yu, N. Metasurface smart glass for object recognition. In Proc. Conference on Lasers and Electro-Optics https://doi.org/10.1364/cleo_qels.2022.fm2h.6 (Optica Publishing group, 2022).
Léonard, F., Backer, A. S., Fuller, E. J., Teeter, C. & Vineyard, C. M. Co-design of free-space metasurface optical neuromorphic classifiers for high performance. ACS Photonics 8, 2103–2111 (2021).
Huang, L. et al. Photonic advantage of optical encoders. Nanophotonics 13, 1191–1196 (2024).
Whitehead, J. E. M., Zhan, A., Colburn, S., Huang, L. & Majumdar, A. Fast extended depth of focus meta-optics for varifocal functionality. Photonics Res. 10, 828–833 (2022).
Chen, M. K., Liu, X., Sun, Y. & Tsai, D. P. Artificial intelligence in meta-optics. Chem. Rev. 122, 15356–15413 (2022).
Jiang, J., Chen, M. & Fan, J. A. Deep neural networks for the evaluation and design of photonic devices. Nat. Rev. Mater. 6, 679–700 (2021).
Yablonovitch, E. Statistical ray optics. J. Opt. Soc. Am. 72, 899–907 (1982).
Garnett, E. & Yang, P. Light trapping in silicon nanowire solar cells. Nano Lett. 10, 1082–1087 (2010).
Garnett, E. C., Brongersma, M. L., Cui, Y. & McGehee, M. D. Nanowire solar cells. Ann. Rev. Mater. Res. 41, 269–295 (2011).
Zhou, D. & Biswas, R. Photonic crystal enhanced light-trapping in thin film solar cells. J. Appl. Phys. 103, 093102 (2008).
Ferry, V. E., Polman, A. & Atwater, H. A. Light trapping in plasmonic solar cells. Opt. Express 18, A237–A245 (2010).
Ding, I.-K. et al. Plasmonic dye-sensitized solar cells. Adv. Energy Mater. 1, 52–57 (2011).
Yu, Z., Raman, A. & Fan, S. Fundamental limit of nanophotonic light trapping in solar cells. Proc. Natl Acad. Sci. USA 107, 17491–17496 (2010).
Callahan, D., Munday, J. & Atwater, H. Solar cell light trapping beyond the ray optic limit. Nano Lett. 12, 214–218 (2012).
Priolo, F., Gregorkiewicz, T., Galli, M. & Krauss, T. F. Silicon nanostructures for photonics and photovoltaics. Nat. Nanotechnol. 9, 19–32 (2014).
Brongersma, M. L., Cui, Y. & Fan, S. Light management for photovoltaics using high-index nanostructures. Nat. Mater. 13, 451–460 (2014).
Neder, V., Ra’Di, Y., Alù, A. & Polman, A. Combined metagratings for efficient broad-angle scattering metasurface. ACS Photonics 6, 1010–1017 (2019).
Cordaro, A. et al. Antireflection high-index metasurfaces combining Mie and Fabry-Pérot resonances. ACS Photonics 6, 453–459 (2019).
Monti, A., Alù, A., Toscano, A. & Bilotti, F. Metasurface-based anti-reflection coatings at optical frequencies. J. Opt. 20, 055001 (2018).
Hossain, M. I. et al. Non-resonant metal-oxide metasurfaces for efficient perovskite solar cells. Sol. Energy 198, 570–577 (2020).
Elshorbagy, M. H., García-Cámara, B., López-Fraguas, E. & Vergaz, R. Efficient light management in a monolithic tandem perovskite/silicon solar cell by using a hybrid metasurface. Nanomaterials 9, 791 (2019).
Aydin, K., Ferry, V. E., Briggs, R. M. & Atwater, H. A. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2, 517 (2011).
Azad, A. K. et al. Metasurface broadband solar absorber. Sci. Rep. 6, 6–11 (2016).
Costantini, D. et al. Plasmonic metasurface for directional and frequency-selective thermal emission. Phys. Rev. Appl. 4, 014023 (2015).
Woolf, D. et al. Heterogeneous metasurface for high temperature selective emission. Appl. Phys. Lett. 105, 081110 (2014).
Sakurai, A. & Matsuno, Y. Design and fabrication of a wavelength-selective near-infrared metasurface emitter for a thermophotovoltaic system. Micromachines 10, 157 (2019).
Peng, Y. et al. Colorful low-emissivity paints for space heating and cooling energy savings. Proc. Natl Acad. Sci. USA 120, e2300856120 (2023).
Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).
Zhu, L., Raman, A. & Fan, S. Color-preserving daytime radiative cooling. Appl. Phys. Lett. 103, 223902 (2013).
Zhai, Y. et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017).
Goldstein, E. A., Raman, A. P. & Fan, S. Sub-ambient non-evaporative fluid cooling with the sky. Nat. Energy 2, 17143 (2017).
Cencillo-Abad, P., Franklin, D., Mastranzo-Ortega, P., Sanchez-Mondragon, J. & Chanda, D. Ultralight plasmonic structural color paint. Sci. Adv. 9, eadf7207 (2023).
Pandika, M. Holographic chocolates look as beautiful as they taste. The Salt https://www.npr.org/sections/thesalt/2014/06/14/321816570/holographic-chocolates-look-as-beautiful-as-they-taste (2014).
Maxwell Garnett, J. C. Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. A 203, 385–420 (1904).
Murray, W. A. & Barnes, W. L. Plasmonic materials. Adv. Mater. 19, 3771–3782 (2007).
Mühlschlegel, P., Eisler, H. J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).
Mie, G. Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions. Ann. Phys. 25, 377–445 (1908).
Mongia, R. K. & Bhartia, P. Dielectric resonator antennas — a review and general design relations for resonant frequency and bandwidth. Int. J. Microw. Millim. Wave Comput. Aided Eng. https://doi.org/10.1002/mmce.4570040304 (1994).
Kuester, E. F. & Holloway, C. L. Comparison of approximations for effective parameters of artificial dielectrics. IEEE Trans. Microw. Theory Tech. 38, 1752–1755 (1990).
Cao, L. et al. Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 8, 643–647 (2009).
Garcia-Etxarri, A. et al. Strong magnetic response of submicron silicon particles in the infrared. Opt. Express 19, 4815–4826 (2010).
Person, S. et al. Demonstration of zero optical backscattering from single nanoparticles. Nano Lett. 13, 1806–1809 (2013).
Fu, Y. H., Kuznetsov, A. I., Miroshnichenko, A. E. & Yu, Y. F. Directional visible light scattering by silicon nanoparticles. Nat Commun. 4, 1527 (2013).
Schuller, J. A., Taubner, T. & Brongersma, M. L. Optical antenna thermal emitters. Nat. Photonics 3, 658–661 (2009).
Rolly, B., Geffrin, J.-M., Abdeddaim, R., Stout, B. & Bonod, N. Controllable emission of a dipolar source coupled with a magneto-dielectric resonant subwavelength scatterer. Sci. Rep. 3, 3063 (2013).
Cihan, A. F., Curto, A. G., Raza, S., Kik, P. G. & Brongersma, M. L. Silicon Mie resonators for highly directional light emission from monolayer MoS2. Nat. Photonics 12, 284–290 (2018).
Schmidt, M. K., Esteban, R., Su, I., Mackowski, S. & Aizpurua, J. Dielectric antennas — a suitable platform for controlling magnetic dipolar emission. Opt. Express 20, 930–933 (2012).
Cao, L., Fan, P. & Brongersma, M. L. Optical coupling of deep-subwavelength semiconductor nanowires. Nano Lett. 11, 1463–1468 (2011).
Acknowledgements
M.L.B. acknowledges support from a Multidisciplinary University Research Initiative (MURI) grant from the Air Force Office of Scientific Research under award number FA9550-21-1-0312 and Department of Energy grant DE-FG07-ER46426. A.M. is supported by a Defense Advanced Research Projects Agency (DARPA) Small Business Technology Transfer (STTR) programme. F.C. acknowledges support from the Office of Naval Research (award number N00014-20-1-2450) and the Air Force Office of Scientific Research (award numbers FA9550-21-1-0312 and FA9550-22-1-0243). H.A.A. acknowledges support from the Air Force Office of Scientific Research (award number FA9550-21-1-0312) and from the Physical Behavior of Materials programme, Basic Energy Sciences, US Department of Energy (grant number DE-FG02-07ER46405).
Author information
Authors and Affiliations
Contributions
All the authors researched the data for the article, substantially contributed to the discussion of content, and wrote, reviewed and edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
M.L.B. has served as a scientific advisor to Metamaterials, Inc. and is currently consulting for the startup company Imagia, Inc. (https://www.processingoptics.com/). R.A.P. served as the Vice President of Research and Development at Metamaterials, Inc. A.M. is a co-founder of the startup company Tunoptix. W.T.C. is Chief Technology Officer of the startup company SNOChip. F.C. is a board member of Metalenz (https://metalenz.com/), which he started in 2016 with his former graduate student R. Devlin, now its Chief Executive Officer.
Peer review
Peer review information
Nature Reviews Electrical Engineering thanks Gun-Yeal Lee and Alexander Friemann Dmitriev, who co-reviewed with Ihar Faniayeu, for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
KolourOptik Stripe: https://metamaterial.com
Morphotonix: https://morphotonix.com/
SBIR and STTR programmes: https://www.sbir.gov/awards
SkyCool Systems: https://www.skycoolsystems.com/technology/
The ‘damascene process’ developed in the 1990s: https://www.ibm.com/history/copper-interconnects?mhsrc=ibmsearch_a&mhq=copper%20chip%20history
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Brongersma, M.L., Pala, R.A., Altug, H. et al. The second optical metasurface revolution: moving from science to technology. Nat Rev Electr Eng 2, 125–143 (2025). https://doi.org/10.1038/s44287-024-00136-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s44287-024-00136-4