Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The second optical metasurface revolution: moving from science to technology

Abstract

Optical metasurfaces are judiciously nanostructured thin films capable of manipulating the flow of light in a myriad of new ways. During the past two decades, we have witnessed a true revolution in the basic science that underlies their operation. As a result, these powerful optical elements can now deliver never-seen-before optical functions and transformed the way we think about light–matter interaction at the nanoscale. They also offer a favourable size, weight, power and cost metric compared to bulky optical elements such as lenses and prisms based on polished pieces of glass or moulded plastics. These valuable traits are especially relevant for use in many emerging applications, including wearable displays and sensors, autonomous navigation (robotics, automotive and aerospace), computational imaging, solar energy harvesting and radiative cooling. With the advent of advanced software and high-volume manufacturing processes, the promise of metasurfaces is becoming a practical reality and has already generated tremendous interest from industry. This Review discusses the rapid, recent advances towards transitioning metasurface science into real technologies, propelling the second metasurface revolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Industrialized nanofabrication steps and examples of printed optical metasurface structures using R2R nanoimprint.
Fig. 2: Metasurfaces for controlling structural colour, photodetection and light emission.
Fig. 3: Metasurface technology for biosensing.
Fig. 4: Metasurface-based depth sensing.
Fig. 5: Meta-optical computational systems for multi-modal imaging and computer vision tasks.
Fig. 6: Photon management for solar energy harvesting and thermal emission control.

Similar content being viewed by others

References

  1. Chen, F. T. & Craighead, H. G. Diffractive phase elements based on two-dimensional artificial diffractive phase elements based on two-dimensional artificial dielectrics. Opt. Lett. 20, 121 (1995).

    Article  MATH  Google Scholar 

  2. Smith, R. E., Warren, M. E., Wendt, J. R. & Vawter, G. A. Polarization-sensitive subwavelength antireflection surfaces on a semiconductor for 975 nm. Opt. Lett. 21, 1201–1203 (1996).

    Article  Google Scholar 

  3. Chen, F. T. & Craighead, H. G. Diffractive lens fabricated with mostly zeroth-order gratings. Opt. Lett. 21, 177–179 (1996).

    Article  MATH  Google Scholar 

  4. Lalanne, P., Astilean, S., Chavel, P., Cambril, E. & Launois, H. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt. Lett. 23, 1081 (1998).

    Article  Google Scholar 

  5. Pancharatnam, S. Generalized theory of interference and its applications. Proc. Indian Acad. Sci. A44, 247–262 (1956).

    MathSciNet  MATH  Google Scholar 

  6. Berry, M. V. The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt. 34, 1401–1407 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  7. Bomzon, Z., Kleiner, V. & Hasman, E. Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings. Appl. Phys. Lett. 79, 1587 (2001).

    Article  Google Scholar 

  8. Bomzon, Z., Biener, G., Kleiner, V. & Hasman, E. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 27, 1141–1143 (2002).

    Article  Google Scholar 

  9. Hasman, E., Kleiner, V., Biener, G. & Niv, A. Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics. Appl. Phys. Lett. 82, 328–330 (2003).

    Article  Google Scholar 

  10. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Article  MATH  Google Scholar 

  11. Ni, X., Emani, N. K., Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Broadband light bending with plasmonic nanoantennas. Science 335, 427 (2012).

    Article  Google Scholar 

  12. Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

    Article  MATH  Google Scholar 

  13. Yu, Y. F. et al. High-transmission dielectric metasurface with 2π phase control at visible wavelengths. Laser Photonics Rev. 9, 412–418 (2015).

    Article  MATH  Google Scholar 

  14. Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, 1983).

  15. Bharadwaj, P., Deutsch, B. & Novotny, L. Optical antennas. Adv. Opt. Photonics 1, 438–483 (2009).

    Article  Google Scholar 

  16. Bozhevolnyi, S. I. & Søndergaard, T. General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. Opt. Express 15, 10869–10877 (2007).

    Article  MATH  Google Scholar 

  17. Landreman, P. E., Chalabi, H., Park, J. & Brongersma, M. L. Fabry-Perot description for Mie resonances of rectangular dielectric nanowire optical resonators. Opt. Express 24, 29760–29772 (2016).

    Article  Google Scholar 

  18. Taminiau, T. H., Stefani, F. D. & van Hulst, N. F. Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes. Nano Lett. 11, 1020–1024 (2011).

    Article  Google Scholar 

  19. Novotny, L. Effective wavelength scaling for optical antennas. Phys. Rev. Lett. 98, 266802 (2007).

    Article  MATH  Google Scholar 

  20. Larouche, S. & Smith, D. R. Reconciliation of generalized refraction with diffraction theory. Opt. Lett. 37, 2391 (2012).

    Article  MATH  Google Scholar 

  21. Yu, N. & Capasso, F. Flat optics: controlling wavefronts with optical antenna metasurfaces. IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).

    Article  Google Scholar 

  22. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Article  Google Scholar 

  23. Molesky, S. et al. Inverse design in nanophotonics. Nat. Photonics 12, 659–670 (2018).

    Article  MATH  Google Scholar 

  24. Fan, J. A. Freeform metasurface design based on topology optimization. MRS Bull. 45, 196–201 (2020).

    Article  MATH  Google Scholar 

  25. Jensen, J. S. & Sigmund, O. Topology optimization for nano-photonics. Laser Photonics Rev. 5, 308–321 (2011).

    Article  MATH  Google Scholar 

  26. Chen, W. T., Zhu, A. Y. & Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. 5, 604–620 (2020).

    Article  MATH  Google Scholar 

  27. Maguid, E. et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 352, 1202–1206 (2016).

    Article  MATH  Google Scholar 

  28. Kamali, S. M. et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles. Phys. Rev. X 7, 041056 (2017).

    MATH  Google Scholar 

  29. Maguid, E. et al. Multifunctional interleaved geometric-phase dielectric metasurfaces. Light Sci. Appl. 6, e17027 (2017).

    Article  Google Scholar 

  30. Khorasaninejad, M. & Capasso, F. Metalenses: versatile multifunctional photonic components. Science 358, eaam8100 (2017).

    Article  Google Scholar 

  31. Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).

    Article  Google Scholar 

  32. Rubin, N. A. et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, eaax1839 (2019).

    Article  Google Scholar 

  33. Lee, G. et al. Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale 10, 4237–4245 (2018).

    Article  MATH  Google Scholar 

  34. Paniagua-Domínguez, R. et al. A metalens with a near-unity numerical aperture. Nano Lett. 18, 2124–2132 (2018).

    Article  MATH  Google Scholar 

  35. Liang, H. et al. Ultrahigh numerical aperture metalens at visible wavelengths. Nano Lett. 18, 4460–4466 (2018).

    Article  MATH  Google Scholar 

  36. Chen, W. T., Ibrahim, Y., Zhu, A. Y. & Capasso, F. Hybrid metasurface-refractive lenses. In Proc. Optical Design and Fabrication 2019 (Freeform, OFT) https://doi.org/10.1364/OFT.2019.OT2A.4 (Optica Publishing Group, 2019).

  37. Sanjeev, V. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2017).

    MATH  Google Scholar 

  38. Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

    Article  MATH  Google Scholar 

  39. Shrestha, S., Overvig, A. C., Lu, M., Stein, A. & Yu, N. Broadband achromatic dielectric metalenses. Light Sci. Appl. 7, 85 (2018).

    Article  Google Scholar 

  40. Wang, S. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018).

    Article  MATH  Google Scholar 

  41. Li, G., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017).

    Article  MATH  Google Scholar 

  42. Krasnok, A., Tymchenko, M. & Alù, A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater. Today 21, 8–21 (2018).

    Article  Google Scholar 

  43. Ni, X., Kildishev, A. V. & Shalaev, V. M. Metasurface holograms for visible light. Nat. Commun. 4, 2807 (2013).

    Article  MATH  Google Scholar 

  44. Zheng, G. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015).

    Article  Google Scholar 

  45. Huang, Y. W. et al. Aluminum plasmonic multicolor meta-hologram. Nano Lett. 15, 3122–3127 (2015).

    Article  Google Scholar 

  46. Feng, H. et al. Spin-switched three-dimensional full-color scenes based on a dielectric meta-hologram. ACS Photonics 6, 2910–2916 (2019).

    Article  MATH  Google Scholar 

  47. Lin, R. J. et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 14, 227–231 (2019).

    Article  MATH  Google Scholar 

  48. Holsteen, A. L., Lin, D., Kauvar, I., Wetzstein, G. & Brongersma, M. L. A light-field metasurface for high-resolution single-particle tracking. Nano Lett. 19, 2267–2271 (2019).

    Article  MATH  Google Scholar 

  49. Engheta, N., Salandrino, A. & Alù, A. Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. Phys. Rev. Lett. 95, 95504 (2005).

    Article  Google Scholar 

  50. Zeitner, U. D. et al. High performance diffraction gratings made by e-beam lithography. Appl. Phys. A Mater. Sci. Process. 109, 789–796 (2012).

    Article  MATH  Google Scholar 

  51. Park, J. et al. All-glass 100 mm diameter visible metalens for imaging the cosmos. ACS Nano 18, 3187–3198 (2024).

    Article  MATH  Google Scholar 

  52. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010).

    Article  MATH  Google Scholar 

  53. Esfandyarpour, M., Garnett, E., Cui, Y., McGehee, M. D. & Brongersma, M. L. B. Metamaterial mirrors in optoelectronic devices. Nat. Nanotechnol. 9, 542–547 (2014).

    Article  Google Scholar 

  54. Kim, S. J. et al. Superabsorbing, artificial metal films constructed from semiconductor nanoantennas. Nano Lett. 16, 3801–3808 (2016).

    Article  MATH  Google Scholar 

  55. Kim, S. J. et al. Light trapping for solar fuel generation with Mie resonances. Nano Lett. 14, 1446–1452 (2014).

    Article  MATH  Google Scholar 

  56. Kempa, T. J., Day, R. W., Kim, S.-K., Park, H.-G. & Lieber, C. M. Semiconductor nanowires: a platform for exploring limits and concepts for nano-enabled solar cells. Energy Environ. Sci. 6, 719 (2013).

    Article  Google Scholar 

  57. Kim, S. J. et al. Anti-Hermitian photodetector facilitating efficient subwavelength photon sorting. Nat. Commun. 9, 316 (2018).

    Article  MATH  Google Scholar 

  58. Pors, A., Nielsen, M. G. & Bozhevolnyi, S. I. Plasmonic metagratings for simultaneous determination of Stokes parameters. Optica 2, 716–723 (2015).

    Article  Google Scholar 

  59. Balthasar Mueller, J. P., Leosson, K. & Capasso, F. Ultracompact metasurface in-line polarimeter. Optica 3, 42–47 (2016).

    Article  Google Scholar 

  60. Basiri, A. et al. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements. Light Sci. Appl. 8, 78 (2019).

    Article  MATH  Google Scholar 

  61. Yokogawa, S., Burgos, S. P. & Atwater, H. A. Plasmonic color filters for CMOS image sensor applications. Nano Lett. 12, 4349–4354 (2012).

    Article  Google Scholar 

  62. Brongersma, M. L. Plasmonic photodetectors, photovoltaics, and hot-electron devices. Proc. IEEE 104, 2349–2361 (2016).

    Article  MATH  Google Scholar 

  63. McClung, A., Samudrala, S., Torfeh, M., Mansouree, M. & Arbabi, A. Snapshot spectral imaging with parallel metasystems. Sci. Adv. 6, eabc7646 (2020).

    Article  Google Scholar 

  64. Cao, L. et al. Semiconductor nanowire optical antenna solar absorbers. Nano Lett. 10, 439–445 (2010).

    Article  Google Scholar 

  65. Kim, S. J., Fan, P., Kang, J.-H. & Brongersma, M. L. Creating semiconductor metafilms with designer absorption spectra. Nat. Commun. 6, 7591 (2015).

    Article  Google Scholar 

  66. Esfandyarpour, M., Curto, A. G., Kik, P. G., Engheta, N. & Brongersma, M. L. Optical emission near a high-impedance mirror. Nat. Commun. 9, 3324 (2018).

    Article  MATH  Google Scholar 

  67. Vaskin, A., Kolkowski, R., Koenderink, A. F. & Staude, I. Light-emitting metasurfaces. Nanophotonics 8, 1151–1198 (2019).

    Article  Google Scholar 

  68. Liu, S. et al. Light-emitting metasurfaces: simultaneous control of spontaneous emission and far-field radiation. Nano Lett. 18, 6906–6914 (2018).

    Article  MATH  Google Scholar 

  69. Khaidarov, E. et al. Control of LED emission with functional dielectric metasurfaces. Laser Photonics Rev. 14, 1900235 (2020).

    Article  MATH  Google Scholar 

  70. Iyer, P. P. et al. Unidirectional luminescence from InGaN/GaN quantum-well metasurfaces. Nat. Photonics 14, 543–548 (2020).

    Article  MATH  Google Scholar 

  71. Spinelli, P., Verschuuren, M. A. & Polman, A. Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nat. Commun. 3, 692 (2012).

    Article  Google Scholar 

  72. Neder, V., Luxembourg, S. L. & Polman, A. Efficient colored silicon solar modules using integrated resonant dielectric nanoscatterers. Appl. Phys. Lett. 111, 073902 (2017).

    Article  Google Scholar 

  73. Lee, N., Xue, M., Hong, J., van de Groep, J. & Brongersma, M. L. Multi-resonant Mie resonator arrays for broadband light trapping in ultrathin c-Si solar cells. Adv. Mater. 2210941, 1–8 (2023).

    Google Scholar 

  74. Chang-Hasnain, C. J. High-contrast gratings as a new platform for integrated optoelectronics. Semicond. Sci. Technol. 26, 014043 (2011).

    Article  Google Scholar 

  75. Xie, Y. Y. et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions. Nat. Nanotechnol. 15, 125–130 (2020).

    Article  MATH  Google Scholar 

  76. Joo, W. J. et al. Metasurface-driven OLED displays beyond 10,000 pixels per inch. Science 370, 459–463 (2020).

    Article  Google Scholar 

  77. Wills, S. Meta-mirror OLEDs smash through pixel-density limits. OPTICA https://www.optica-opn.org/home/newsroom/2020/october/meta-mirror_oleds_smash_through_pixel-density_limi/ (2020).

  78. Aizenberg, J., Rogers, J. A., Paul, K. E. & Whitesides, G. M. Imaging profiles of light intensity in the near field: applications to phase-shift photolithography. Appl. Opt. 37, 2145–2152 (1998).

    Article  Google Scholar 

  79. Qin, D., Xia, Y. & Whitesides, G. M. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 5, 491–502 (2010).

    Article  MATH  Google Scholar 

  80. Kang, H. et al. Emerging low-cost, large-scale photonic platforms with soft lithography and self-assembly. Photonics Insights 2, R04 (2023).

    Article  Google Scholar 

  81. Kooy, N., Mohamed, K., Pin, L. T. & Guan, O. S. A review of roll-to-roll nanoimprint lithography. Nanoscale Res. Lett. 9, 320 (2014).

    Article  Google Scholar 

  82. Ahn, S. H. & Guo, L. J. High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Adv. Mater. 20, 2044–2049 (2008).

    Article  MATH  Google Scholar 

  83. Kim, J. et al. Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible. Nat. Mater. 22, 474–481 (2023).

    Article  MATH  Google Scholar 

  84. Battaglia, C. et al. Nanoimprint lithography for high-efficiency thin-film silicon solar cells. Nano Lett. 11, 661–665 (2011).

    Article  MATH  Google Scholar 

  85. Garnett, E. C., Ehrler, B., Polman, A. & Alarcon-Llado, E. Photonics for photovoltaics: advances and opportunities. ACS Photonics 8, 61–70 (2021).

    Article  Google Scholar 

  86. Ji, R. et al. UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing. Microelectron. Eng. 87, 963–967 (2010).

    Article  MATH  Google Scholar 

  87. Yavas, O., Svedendahl, M. & Quidant, R. Unravelling the role of electric and magnetic dipoles in biosensing with Si nanoresonators. ACS Nano 13, 4582–4588 (2019).

    Article  MATH  Google Scholar 

  88. Xuan, X., Yoon, H. S. & Park, J. Y. A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens. Bioelectron. 109, 75–82 (2018).

    Article  Google Scholar 

  89. Chen, W. T. & Capasso, F. Will flat optics appear in everyday life anytime soon? Appl. Phys. Lett. 118, 100503 (2021).

    Article  Google Scholar 

  90. Glovinski, C. and Markowitz, M. Metalenz and STMicroelectronics deliver world’s first optical metasurface technology for consumer electronics devices. STMicroelectronics https://newsroom.st.com/media-center/press-item.html/t4458.html (2022).

  91. SPIE Europe. Lumotive launches ‘LM10’ optical beam-steering semiconductor. Optics.org https://optics.org/news/14/8/47 (2023).

  92. Rangwala, S. Metalenz pioneers high volume semiconductor foundry-based lens manufacturing. Forbes https://www.forbes.com/sites/sabbirrangwala/2023/07/05/metalenz-pioneers-high-volume-semiconductor-foundry-based-lens-manufacturing/?sh=1577001b23bd (2023).

  93. Leitgeb, M. et al. Multilength scale patterning of functional layers by roll-to-roll ultraviolet-light-assisted nanoimprint lithography. ACS Nano 10, 4926–4941 (2016).

    Article  MATH  Google Scholar 

  94. Snieder, J., Dielen, M. & van Ostayen, R. A. J. Simulating the residual layer thickness in roll-to-plate nanoimprinting with tensioned webs. Micromachines 13, 461 (2022).

    Article  Google Scholar 

  95. Wu, C.-L., Sung, C.-K., Yao, P.-H. & Chen, C.-H. Sub-15 nm linewidth gratings using roll-to-roll nanoimprinting and plasma trimming to fabricate flexible wire-grid polarizers with low colour shift. Nanotechnology 24, 265301 (2013).

    Article  Google Scholar 

  96. Fattal, D. et al. A multi-directional backlight for a wide-angle, glasses-free three-dimensional display. Nature 495, 348–351 (2013).

    Article  MATH  Google Scholar 

  97. Nanoimprint lithography semiconductor manufacturing system that covers diverse applications with simple patterning mechanism. Canon https://global.canon/en/news/2023/20231013.html (2023).

  98. Park, J. B. et al. Transfer printing of vertical-type microscale light-emitting diode array onto flexible substrate using biomimetic stamp. Opt. Express 27, 6832–6841 (2019).

    Article  MATH  Google Scholar 

  99. Chen, Y. et al. Reliable patterning, transfer printing and post-assembly of multiscale adhesion-free metallic structures for nanogap device applications. Adv. Funct. Mater. 30, 2002549 (2020).

    Article  Google Scholar 

  100. Liu, H. et al. Transfer printing of solution-processed 3D ZnO nanostructures with ultra-high yield for flexible metasurface color filter. Adv. Mater. Interfaces 9, 2101963 (2022).

    Article  Google Scholar 

  101. Kwak, M. K. & Lim, Y.-W. Multi-functional nanopatterned optical films fabricated using capillary force lithography. J. Colloid Interface Sci. 367, 460–466 (2012).

    Article  Google Scholar 

  102. Hokari, R., Kurihara, K., Takada, N. & Hiroshima, H. Development of simple high-resolution embedded printing for transparent metal grid conductors. Appl. Phys. Lett. 111, 63107 (2017).

    Article  Google Scholar 

  103. Colomban, P. The use of metal nanoparticles to produce yellow, red and iridescent colour, from bronze age to present times in lustre pottery and glass: solid state chemistry, spectroscopy and nanostructure. J. Nano Res. 8, 109–132 (2010).

    Article  Google Scholar 

  104. Parker, A. R. & Townley, H. E. Biomimetics of photonic nanostructures. Nat. Nanotechnol. 2, 347–353 (2007).

    Article  MATH  Google Scholar 

  105. Faraday, M. The Bakerian lecture: experimental relations of gold (and other metals) to light. Philos. Trans. 147, 145–181 (1857).

    Article  Google Scholar 

  106. Oldenburg, S., Averitt, R., Westcott, S. L. & Halas, N. J. Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243–247 (1998).

    Article  MATH  Google Scholar 

  107. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010).

    Article  MATH  Google Scholar 

  108. Cao, L., Fan, P., Barnard, E. S., Brown, A. M. & Brongersma, M. L. Tuning the color of silicon nanostructures. Nano Lett. 10, 2649–2654 (2010).

    Article  MATH  Google Scholar 

  109. Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, eaag2472 (2016).

    Article  MATH  Google Scholar 

  110. Li, Q., Wu, T., van de Groep, J., Lalanne, P. & Brongersma, M. Structural color from a coupled nanowire pair beyond the bonding and anti-bonding model. Optica 8, 464–470 (2021).

    Article  Google Scholar 

  111. Kristensen, A. et al. Plasmonic colour generation. Nat. Rev. Mater. 2, 16088 (2016).

    Article  Google Scholar 

  112. Lee, T., Jang, J., Jeong, H. & Rho, J. Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications. Nano Converg. 5, 1–21 (2018).

    Article  MATH  Google Scholar 

  113. Kumar, K. et al. Printing colour at the optical diffraction limit. Nat. Nanotechnol. 7, 557–561 (2012).

    Article  MATH  Google Scholar 

  114. Tan, S. J. et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett. 14, 4023–4029 (2014).

    Article  MATH  Google Scholar 

  115. Roberts, A. S., Pors, A., Albrektsen, O. & Bozhevolnyi, S. I. Subwavelength plasmonic color printing protected for ambient use. Nano Lett. 14, 783–787 (2014).

    Article  Google Scholar 

  116. Dong, Z. et al. Schrödinger’s red pixel by quasi-bound-states-in-the-continuum. Sci. Adv. 8, eabm4512 (2022).

    Article  Google Scholar 

  117. Dong, Z. et al. Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space. Nano Lett. 17, 7620–7628 (2017).

    Article  MATH  Google Scholar 

  118. Yang, W. et al. All-dielectric metasurface for high-performance structural color. Nat. Commun. 11, 1864 (2020).

    Article  MATH  Google Scholar 

  119. Staude, I. et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 7, 7824–7832 (2013).

    Article  MATH  Google Scholar 

  120. Goh, X. M. et al. Three-dimensional plasmonic stereoscopic prints in full colour. Nat. Commun. 5, 5361 (2014).

    Article  MATH  Google Scholar 

  121. Cihan, A. F., Curto, A. G., Raza, S., Kik, P. G. & Brongersma, M. L. Silicon Mie resonators for highly directional emission from monolayer MoS2. Nat. Photonics 12, 284–291 (2018).

    Article  MATH  Google Scholar 

  122. Vynck, K. et al. The visual appearances of disordered optical metasurfaces. Nat. Mater. 21, 1035–1041 (2022).

    Article  MATH  Google Scholar 

  123. Lee, G. Y. et al. Metasurface eyepiece for augmented reality. Nat. Commun. 9, 4562 (2018).

    Article  MATH  Google Scholar 

  124. Li, Z., Pestourie, R., Capasso, F. & Johnson, S. G. Inverse design enables high-performance meta-optics reshaping virtual reality. Nat. Commun. 13, 2409 (2022).

    Article  MATH  Google Scholar 

  125. Born, B. et al. Off-axis metasurfaces for folded flat optics. Nat. Commun. 14, 5602 (2023).

    Article  MATH  Google Scholar 

  126. Guo, C., Wang, H. & Fan, S. Squeeze free space with nonlocal flat optics. Optica 7, 1133–1138 (2020).

    Article  MATH  Google Scholar 

  127. Reshef, O. et al. An optic to replace space and its application towards ultra-thin imaging systems. Nat. Commun. 12, 3512 (2021).

    Article  MATH  Google Scholar 

  128. Gopakumar, M. et al. Full-colour 3D holographic augmented-reality displays with metasurface waveguides. Nature 629, 791–798 (2024).

    Article  MATH  Google Scholar 

  129. Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, 374–377 (2019).

    Article  Google Scholar 

  130. Eaves-Rathert, J. et al. Dynamic color tuning with electrochemically actuated TiO2 metasurfaces. Nano Lett. 22, 1626–1632 (2022).

    Article  MATH  Google Scholar 

  131. Holsteen, A. L., Cihan, A. F. & Brongersma, M. L. Temporal color mixing and dynamic beam shaping with silicon metasurfaces. Science 365, 257–260 (2019).

    Article  MATH  Google Scholar 

  132. Duan, X., Kamin, S. & Liu, N. Dynamic plasmonic colour display. Nat. Commun. 8, 14606 (2017).

    Article  Google Scholar 

  133. Li, Q. et al. Metasurface optofluidics for dynamic control of light fields. Nat. Nanotechnol. 17, 1097–1103 (2022).

    Article  MATH  Google Scholar 

  134. Song, M. et al. Enabling optical steganography, data storage, and encryption with plasmonic colors. Laser Photonics Rev. 15, 2000343 (2021).

    Article  Google Scholar 

  135. Jang, J., Badloe, T. & Rho, J. Unlocking the future of optical security with metasurfaces. Light Sci. Appl. 10, 144 (2021).

    Article  MATH  Google Scholar 

  136. Burgos, S. P., Yokogawa, S. & Atwater, H. A. Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal oxide semiconductor image sensor color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary. ACS Nano 7, 10038–10047 (2013).

    Article  Google Scholar 

  137. Franklin, D., Frank, R., Wu, S. T. & Chanda, D. Actively addressed single pixel full-colour plasmonic display. Nat. Commun. 8, 1–10 (2017).

    Article  Google Scholar 

  138. Altug, H., Oh, S. H., Maier, S. A. & Homola, J. Advances and applications of nanophotonic biosensors. Nat. Nanotechnol. 17, 5–16 (2022).

    Article  MATH  Google Scholar 

  139. Zhang, S. et al. Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective. Front. Opt. Photonics 10, 265–299 (2021).

    Article  MATH  Google Scholar 

  140. Qin, J. et al. Metasurface micro/nano-optical sensors: principles and applications. ACS Nano 16, 11598–11618 (2022).

    Article  Google Scholar 

  141. Vázquez-Guardado, A. et al. DNA-modified plasmonic sensor for the direct detection of virus biomarkers from the blood. Nano Lett. 21, 7505–7511 (2021).

    Article  MATH  Google Scholar 

  142. Gao, Z. et al. Machine-learning-assisted microfluidic nanoplasmonic digital immunoassay for cytokine storm profiling in COVID-19 patients. ACS Nano 15, 18023–18036 (2021).

    Article  Google Scholar 

  143. Belushkin, A. et al. Rapid and digital detection of inflammatory biomarkers enabled by a novel portable nanoplasmonic imager. Small 16, 1906108 (2020).

    Article  Google Scholar 

  144. Li, Z., Tian, X., Qiu, C. W. & Ho, J. S. Metasurfaces for bioelectronics and healthcare. Nat. Electron. 4, 382–391 (2021).

    Article  MATH  Google Scholar 

  145. Wang, Y. et al. Wearable plasmonic-metasurface sensor for noninvasive and universal molecular fingerprint detection on biointerfaces. Sci. Adv. 7, eabe4553 (2021).

    Article  Google Scholar 

  146. Xiong, Y. et al. Photonic crystal enhanced fluorescence emission and blinking suppression for single quantum dot digital resolution biosensing. Nat. Commun. 13, 4647 (2022).

    Article  MATH  Google Scholar 

  147. Fothergill, S. M., Joyce, C. & Xie, F. Metal enhanced fluorescence biosensing: from ultra-violet towards second near-infrared window. Nanoscale 10, 20914–20929 (2018).

    Article  Google Scholar 

  148. Semeniak, D., Cruz, D. F., Chilkoti, A. & Mikkelsen, M. H. Plasmonic fluorescence enhancement in diagnostics for clinical tests at point-of-care: a review of recent technologies. Adv. Mater. 35, 2107986 (2023).

    Article  Google Scholar 

  149. Zang, F. et al. Ultrasensitive Ebola virus antigen sensing via 3D nanoantenna arrays. Adv. Mater. 31, 1902331 (2019).

    Article  Google Scholar 

  150. Cruz, D. F. et al. Ultrabright fluorescence readout of an inkjet-printed immunoassay using plasmonic nanogap cavities. Nano Lett. 20, 4330–4336 (2020).

    Article  MATH  Google Scholar 

  151. Ansaryan, S. et al. High-throughput spatiotemporal monitoring of single-cell secretions via plasmonic microwell arrays. Nat. Biomed. Eng. 7, 943–958 (2023).

    Article  MATH  Google Scholar 

  152. Conteduca, D. et al. Dielectric nanohole array metasurface for high-resolution near-field sensing and imaging. Nat. Commun. 12, 3293 (2021).

    Article  MATH  Google Scholar 

  153. Yesilkoy, F. et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics 13, 390–396 (2019).

    Article  MATH  Google Scholar 

  154. Luo, Y. et al. Metasurface-based abrupt autofocusing beam for biomedical applications. Small Methods 6, 2101228 (2022).

    Article  Google Scholar 

  155. Ji, A. et al. Quantitative phase contrast imaging with a nonlocal angle-selective metasurface. Nat. Commun. 13, 7848 (2022).

    Article  MATH  Google Scholar 

  156. Khorasaninejad, M. et al. Multispectral chiral imaging with a metalens. Nano Lett. 16, 4595–4600 (2016).

    Article  MATH  Google Scholar 

  157. Kwon, H., Arbabi, E., Kamali, S. M., Faraji-Dana, M. S. & Faraon, A. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nat. Photonics 14, 109–114 (2020).

    Article  Google Scholar 

  158. Pahlevaninezhad, H. et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics 12, 540–547 (2018).

    Article  MATH  Google Scholar 

  159. Langer, J. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 14, 28–117 (2020).

    Article  MATH  Google Scholar 

  160. John-Herpin, A. et al. Metasurface-enhanced infrared spectroscopy: an abundance of materials and functionalities. Adv. Mater. 35, 2110163 (2023).

    Article  Google Scholar 

  161. Xomalis, A. et al. Detecting mid-infrared light by molecular frequency upconversion in dual-wavelength nanoantennas. Science 374, 1268–1271 (2021).

    Article  MATH  Google Scholar 

  162. Palermo, G. et al. Plasmonic metasurfaces based on pyramidal nanoholes for high-efficiency SERS biosensing. ACS Appl. Mater. Interfaces 13, 43715–43725 (2021).

    Article  MATH  Google Scholar 

  163. Caldarola, M. A. et al. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nat. Commun. 6, 7915 (2015).

    Article  MATH  Google Scholar 

  164. Oh, S. H. et al. Nanophotonic biosensors harnessing van der Waals materials. Nat. Commun. 12, 1–18 (2021).

    Article  MATH  Google Scholar 

  165. Kavungal, D. et al. Artificial intelligence–coupled plasmonic infrared sensor for detection of structural protein biomarkers in neurodegenerative diseases. Sci. Adv. 9, eadg9644 (2023).

    Article  Google Scholar 

  166. Wang, X. et al. Advances in information processing and biological imaging using flat optics. Nat. Rev. Electr. Eng. 1, 391–411 (2024).

    Article  MATH  Google Scholar 

  167. Savastano, L. E. & Seibel, E. J. Scanning fiber angioscopy: a multimodal intravascular imaging platform for carotid atherosclerosis. Clin. Neurosurg. 64, 188–198 (2017).

    Article  MATH  Google Scholar 

  168. Ren, H. et al. An achromatic metafiber for focusing and imaging across the entire telecommunication range. Nat. Commun. 13, 4183 (2022).

    Article  MATH  Google Scholar 

  169. Xie, N. et al. Large field-of-view short-wave infrared metalens for scanning fiber endoscopy. J. Biomed. Opt. 28, 1–10 (2023).

    Article  MATH  Google Scholar 

  170. Fröch, J. E. et al. Real time full-color imaging in a meta-optical fiber endoscope. eLight 3, 13 (2023).

    Article  Google Scholar 

  171. Xie, N., Tanguy, Q. A. A., Fröch, J. E., Böhringer, K. F. & Majumdar, A. Spectrally-encoded non-scanning imaging through a fiber. ACS Photonics https://doi.org/10.1021/acsphotonics.3c01582 (2023).

  172. Levene, H. J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003).

    Article  MATH  Google Scholar 

  173. Liu, T. et al. Quantification of antibody avidities and accurate detection of SARS-CoV-2 antibodies in serum and saliva on plasmonic substrates. Nat. Biomed. Eng. 4, 1188–1196 (2020).

    Article  MATH  Google Scholar 

  174. Buralli, D. A. & Morris, G. M. Design of a wide field diffractive landscape lens. Appl. Opt. 28, 3950–3959 (1989).

    Article  MATH  Google Scholar 

  175. Kim, I. et al. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol. 16, 508–524 (2021).

    Article  MATH  Google Scholar 

  176. Neshev, D. N. & Miroshnichenko, A. E. Enabling smart vision with metasurfaces. Nat. Photonics 17, 26–35 (2023).

    Article  MATH  Google Scholar 

  177. Lin, D. et al. Photonic multitasking interleaved Si nanoantenna phased array. Nano Lett. 16, 7671–7676 (2016).

    Article  Google Scholar 

  178. Shpunt, A. Optical designs for zero order reduction. WO patent 2009/093228 A2 (2009).

  179. Mor, Z. Integrated structured-light projector comprising light-emitting elements on a substrate. US patent 9825425 B2 (2017).

  180. Devlin, R. C., Latawiec, P. & Graff, J. Single element dot pattern projector. US patent 2022/0385042 A1 (2022/05/25 2022).

  181. Hashemi, E., Francois, O. & Quaade, U. J. MOE-based dot and flood projector modules for 3D sensing applications. In Proc. Optica Imaging Congress (3D, COSI, DH, FLatOptics, IS, pcAOP) https://doi.org/10.1364/FLATOPTICS.2023.FW5D.2 (Optica Publishing Group, 2023).

  182. Capasso, F. The future and promise of flat optics: a personal perspective. Nanophotonics 7, 953–957 (2018).

    Article  MATH  Google Scholar 

  183. Pitruzzello, G. Metaoptics for the consumer market. Nat. Photonics 17, 6–7 (2023).

    Article  Google Scholar 

  184. Jing, X. et al. Single-shot 3D imaging with point cloud projection based on metadevice. Nat. Commun. 13, 7842 (2022).

    Article  MATH  Google Scholar 

  185. Kim, G. et al. Metasurface-driven full-space structured light for three-dimensional imaging. Nat. Commun. 13, 5920 (2022).

    Article  MATH  Google Scholar 

  186. Li, Z. et al. Full-space cloud of random points with a scrambling metasurface. Light Sci. Appl. 7, 63 (2018).

    Article  MATH  Google Scholar 

  187. Hsu, W. C., Chang, C. H., Hong, Y. H., Kuo, H. C. & Huang, Y. W. Compact structured light generation based on meta-hologram PCSEL integration. Discov. Nano 18, 87 (2023).

    Article  Google Scholar 

  188. Huang, Y. W. et al. Gate-tunable conducting oxide metasurfaces. Nano Lett. 16, 5319–5325 (2016).

    Article  Google Scholar 

  189. Thureja, P. et al. Toward a universal metasurface for optical imaging, communication, and computation. Nanophotonics 11, 3745–3768 (2022).

    Article  MATH  Google Scholar 

  190. Shirmanesh, G. K., Sokhoyan, R., Wu, P. C. & Atwater, H. A. Electro-optically tunable multifunctional metasurfaces. ACS Nano 14, 6912–6920 (2020).

    Article  Google Scholar 

  191. Park, J. et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat. Nanotechnol. 16, 69–76 (2021).

    Article  MATH  Google Scholar 

  192. Gleb, A. M., Yang, Y. & Bowen, P. Tunable liquid crystal metasurfaces. WO patent 2020/190704 A1 (2020).

  193. Akselrod, G. M., Iyer, P. P. & Ross, D. U. Lidar systems based on tunable optical metasurfaces. US patent 11644546 B2 (2023).

  194. Akselrod, G. M., Josberger, E. E. & Weidman, M. C. Fabrication of metallic optical metasurfaces. US patent 10968522 B2 (2021).

  195. Gorelick, S., Guzenko, V. A., Vila-Comamala, J. & David, C. Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating. Nanotechnology 21, 295303 (2010).

    Article  Google Scholar 

  196. Knack, S. Copper-related defects in silicon. Mater. Sci. Semicond. Process. 7, 125–141 (2004).

    Article  MATH  Google Scholar 

  197. Li, S.-Q. et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364, 1087–1090 (2019).

    Article  MATH  Google Scholar 

  198. Chen, C., Seff, A., Kornhauser, A. & Xiao, J. DeepDriving: learning affordance for direct perception in autonomous driving. In Proc. 2015 IEEE International Conference on Computer Vision 2722–2730 (IEEE, 2015).

  199. Gigan, S. et al. Roadmap on wavefront shaping and deep imaging in complex media. J. Phys. Photonics 4, 042501 (2022).

    Article  MATH  Google Scholar 

  200. Sitzmann, V. et al. End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging. ACM Trans. Graph. 37, 1–13 (2018).

    Article  MATH  Google Scholar 

  201. Sun, Q., Wang, C., Fu, Q., Dun, X. & Heidrich, W. End-to-end complex lens design with differentiate ray tracing. ACM Trans. Graph. 40, 1–13 (2021).

    Google Scholar 

  202. Pitilakis, A. et al. Software-defined metasurface paradigm: concept, challenges, prospects. In Proc. 12th International Congress on Artificial Materials for Novel Wave Phenomena, METAMATERIALS 2018 483–485 (IEEE, 2018).

  203. Hunt, J. et al. Metamaterial apertures for computational imaging. Science 339, 310–313 (2013).

    Article  MATH  Google Scholar 

  204. Presutti, F. & Monticone, F. Focusing on bandwidth: achromatic metalens limits. Optica 7, 624–631 (2020).

    Article  MATH  Google Scholar 

  205. Tseng, E. et al. Neural nano-optics for high-quality thin lens imaging. Nat. Commun. 12, 6493 (2021).

    Article  MATH  Google Scholar 

  206. Pinilla, S. et al. Miniature color camera via flat hybrid meta-optics. Sci. Adv. 9, eadg7297 (2023).

    Article  MATH  Google Scholar 

  207. Fröch, J. E. et al. Beating bandwidth limits for large aperture broadband nano-optics. Preprint at https://doi.org/10.48550/arXiv.2402.06824 (2024).

  208. Chen, J. et al. Planar wide-angle-imaging camera enabled by metalens array. Optica 9, 431–437 (2022).

    Article  MATH  Google Scholar 

  209. Zhao, F. et al. Synthetic aperture metalens. Photonics Res. 9, 2388–2397 (2021).

    Article  Google Scholar 

  210. Guo, Q. et al. Compact single-shot metalens depth sensors inspired by eyes of jumping spiders. Proc. Natl Acad. Sci. USA 116, 22959–22965 (2019).

    Article  Google Scholar 

  211. Saragadam, V. et al. Foveated thermal computational imaging in the wild using all-silicon meta-optics. Preprint at https://doi.org/10.48550/arXiv.2212.06345 (2022).

  212. Lu, G. & Fei, B. Medical hyperspectral imaging: a review. J. Biomed. Opt. 19, 010901 (2014).

    Article  MATH  Google Scholar 

  213. Lowe, A., Harrison, N. & French, A. P. Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods 13, 80 (2017).

    Article  MATH  Google Scholar 

  214. Faraji-Dana, M. S. et al. Compact folded metasurface spectrometer. Nat. Commun. 9, 4196 (2018).

    Article  Google Scholar 

  215. Fröch, J. E. et al. Dual band computational infrared spectroscopy via large aperture meta-optics. ACS Photonics 10, 986–992 (2023).

    Google Scholar 

  216. Lin, Z. et al. End-to-end metasurface inverse design for single-shot multi-channel imaging. Opt. Express 30, 28358–28370 (2022).

    Article  Google Scholar 

  217. Arguello, H. et al. Shift-variant color-coded diffractive spectral imaging system. Optica 8, 1424–1434 (2021).

    Article  MATH  Google Scholar 

  218. Colburn, S., Majumdar, A. & Majumdar, A. Metasurface generation of paired accelerating and rotating optical beams for passive ranging and scene reconstruction. ACS Photonics 7, 1529–1536 (2020).

    Article  MATH  Google Scholar 

  219. Tan, S., Yang, F., Boominathan, V., Veeraraghavan, A. & Naik, G. V. 3D imaging using extreme dispersion in optical metasurfaces. ACS Photonics 8, 1421–1429 (2022).

    Article  Google Scholar 

  220. Zheng, H. et al. Meta-optic accelerators for object classifiers. Sci. Adv. 8, eabo6410 (2022).

    Article  Google Scholar 

  221. Tsai, C.-C., Wu, Z., Huang, X., Yu, Z. & Yu, N. Metasurface smart glass for object recognition. In Proc. Conference on Lasers and Electro-Optics https://doi.org/10.1364/cleo_qels.2022.fm2h.6 (Optica Publishing group, 2022).

  222. Léonard, F., Backer, A. S., Fuller, E. J., Teeter, C. & Vineyard, C. M. Co-design of free-space metasurface optical neuromorphic classifiers for high performance. ACS Photonics 8, 2103–2111 (2021).

    Article  Google Scholar 

  223. Huang, L. et al. Photonic advantage of optical encoders. Nanophotonics 13, 1191–1196 (2024).

    Article  MATH  Google Scholar 

  224. Whitehead, J. E. M., Zhan, A., Colburn, S., Huang, L. & Majumdar, A. Fast extended depth of focus meta-optics for varifocal functionality. Photonics Res. 10, 828–833 (2022).

    Article  Google Scholar 

  225. Chen, M. K., Liu, X., Sun, Y. & Tsai, D. P. Artificial intelligence in meta-optics. Chem. Rev. 122, 15356–15413 (2022).

    Article  MATH  Google Scholar 

  226. Jiang, J., Chen, M. & Fan, J. A. Deep neural networks for the evaluation and design of photonic devices. Nat. Rev. Mater. 6, 679–700 (2021).

    Article  MATH  Google Scholar 

  227. Yablonovitch, E. Statistical ray optics. J. Opt. Soc. Am. 72, 899–907 (1982).

    Article  MATH  Google Scholar 

  228. Garnett, E. & Yang, P. Light trapping in silicon nanowire solar cells. Nano Lett. 10, 1082–1087 (2010).

    Article  MATH  Google Scholar 

  229. Garnett, E. C., Brongersma, M. L., Cui, Y. & McGehee, M. D. Nanowire solar cells. Ann. Rev. Mater. Res. 41, 269–295 (2011).

  230. Zhou, D. & Biswas, R. Photonic crystal enhanced light-trapping in thin film solar cells. J. Appl. Phys. 103, 093102 (2008).

    Article  MATH  Google Scholar 

  231. Ferry, V. E., Polman, A. & Atwater, H. A. Light trapping in plasmonic solar cells. Opt. Express 18, A237–A245 (2010).

    Article  Google Scholar 

  232. Ding, I.-K. et al. Plasmonic dye-sensitized solar cells. Adv. Energy Mater. 1, 52–57 (2011).

    Article  MATH  Google Scholar 

  233. Yu, Z., Raman, A. & Fan, S. Fundamental limit of nanophotonic light trapping in solar cells. Proc. Natl Acad. Sci. USA 107, 17491–17496 (2010).

    Article  Google Scholar 

  234. Callahan, D., Munday, J. & Atwater, H. Solar cell light trapping beyond the ray optic limit. Nano Lett. 12, 214–218 (2012).

    Article  MATH  Google Scholar 

  235. Priolo, F., Gregorkiewicz, T., Galli, M. & Krauss, T. F. Silicon nanostructures for photonics and photovoltaics. Nat. Nanotechnol. 9, 19–32 (2014).

    Article  Google Scholar 

  236. Brongersma, M. L., Cui, Y. & Fan, S. Light management for photovoltaics using high-index nanostructures. Nat. Mater. 13, 451–460 (2014).

    Article  MATH  Google Scholar 

  237. Neder, V., Ra’Di, Y., Alù, A. & Polman, A. Combined metagratings for efficient broad-angle scattering metasurface. ACS Photonics 6, 1010–1017 (2019).

    Article  Google Scholar 

  238. Cordaro, A. et al. Antireflection high-index metasurfaces combining Mie and Fabry-Pérot resonances. ACS Photonics 6, 453–459 (2019).

    Article  MATH  Google Scholar 

  239. Monti, A., Alù, A., Toscano, A. & Bilotti, F. Metasurface-based anti-reflection coatings at optical frequencies. J. Opt. 20, 055001 (2018).

    Article  MATH  Google Scholar 

  240. Hossain, M. I. et al. Non-resonant metal-oxide metasurfaces for efficient perovskite solar cells. Sol. Energy 198, 570–577 (2020).

    Article  MATH  Google Scholar 

  241. Elshorbagy, M. H., García-Cámara, B., López-Fraguas, E. & Vergaz, R. Efficient light management in a monolithic tandem perovskite/silicon solar cell by using a hybrid metasurface. Nanomaterials 9, 791 (2019).

    Article  Google Scholar 

  242. Aydin, K., Ferry, V. E., Briggs, R. M. & Atwater, H. A. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2, 517 (2011).

    Article  Google Scholar 

  243. Azad, A. K. et al. Metasurface broadband solar absorber. Sci. Rep. 6, 6–11 (2016).

    Article  Google Scholar 

  244. Costantini, D. et al. Plasmonic metasurface for directional and frequency-selective thermal emission. Phys. Rev. Appl. 4, 014023 (2015).

    Article  MATH  Google Scholar 

  245. Woolf, D. et al. Heterogeneous metasurface for high temperature selective emission. Appl. Phys. Lett. 105, 081110 (2014).

    Article  MATH  Google Scholar 

  246. Sakurai, A. & Matsuno, Y. Design and fabrication of a wavelength-selective near-infrared metasurface emitter for a thermophotovoltaic system. Micromachines 10, 157 (2019).

    Article  MATH  Google Scholar 

  247. Peng, Y. et al. Colorful low-emissivity paints for space heating and cooling energy savings. Proc. Natl Acad. Sci. USA 120, e2300856120 (2023).

    Article  Google Scholar 

  248. Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).

    Article  Google Scholar 

  249. Zhu, L., Raman, A. & Fan, S. Color-preserving daytime radiative cooling. Appl. Phys. Lett. 103, 223902 (2013).

  250. Zhai, Y. et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017).

    Article  MATH  Google Scholar 

  251. Goldstein, E. A., Raman, A. P. & Fan, S. Sub-ambient non-evaporative fluid cooling with the sky. Nat. Energy 2, 17143 (2017).

    Article  Google Scholar 

  252. Cencillo-Abad, P., Franklin, D., Mastranzo-Ortega, P., Sanchez-Mondragon, J. & Chanda, D. Ultralight plasmonic structural color paint. Sci. Adv. 9, eadf7207 (2023).

    Article  Google Scholar 

  253. Pandika, M. Holographic chocolates look as beautiful as they taste. The Salt https://www.npr.org/sections/thesalt/2014/06/14/321816570/holographic-chocolates-look-as-beautiful-as-they-taste (2014).

  254. Maxwell Garnett, J. C. Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. A 203, 385–420 (1904).

    MATH  Google Scholar 

  255. Murray, W. A. & Barnes, W. L. Plasmonic materials. Adv. Mater. 19, 3771–3782 (2007).

    Article  MATH  Google Scholar 

  256. Mühlschlegel, P., Eisler, H. J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    Article  Google Scholar 

  257. Mie, G. Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions. Ann. Phys. 25, 377–445 (1908).

    Article  MATH  Google Scholar 

  258. Mongia, R. K. & Bhartia, P. Dielectric resonator antennas — a review and general design relations for resonant frequency and bandwidth. Int. J. Microw. Millim. Wave Comput. Aided Eng. https://doi.org/10.1002/mmce.4570040304 (1994).

  259. Kuester, E. F. & Holloway, C. L. Comparison of approximations for effective parameters of artificial dielectrics. IEEE Trans. Microw. Theory Tech. 38, 1752–1755 (1990).

    Article  MATH  Google Scholar 

  260. Cao, L. et al. Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 8, 643–647 (2009).

    Article  MATH  Google Scholar 

  261. Garcia-Etxarri, A. et al. Strong magnetic response of submicron silicon particles in the infrared. Opt. Express 19, 4815–4826 (2010).

  262. Person, S. et al. Demonstration of zero optical backscattering from single nanoparticles. Nano Lett. 13, 1806–1809 (2013).

    Article  MATH  Google Scholar 

  263. Fu, Y. H., Kuznetsov, A. I., Miroshnichenko, A. E. & Yu, Y. F. Directional visible light scattering by silicon nanoparticles. Nat Commun. 4, 1527 (2013).

    Article  MATH  Google Scholar 

  264. Schuller, J. A., Taubner, T. & Brongersma, M. L. Optical antenna thermal emitters. Nat. Photonics 3, 658–661 (2009).

    Article  Google Scholar 

  265. Rolly, B., Geffrin, J.-M., Abdeddaim, R., Stout, B. & Bonod, N. Controllable emission of a dipolar source coupled with a magneto-dielectric resonant subwavelength scatterer. Sci. Rep. 3, 3063 (2013).

    Article  Google Scholar 

  266. Cihan, A. F., Curto, A. G., Raza, S., Kik, P. G. & Brongersma, M. L. Silicon Mie resonators for highly directional light emission from monolayer MoS2. Nat. Photonics 12, 284–290 (2018).

    Article  MATH  Google Scholar 

  267. Schmidt, M. K., Esteban, R., Su, I., Mackowski, S. & Aizpurua, J. Dielectric antennas — a suitable platform for controlling magnetic dipolar emission. Opt. Express 20, 930–933 (2012).

    Google Scholar 

  268. Cao, L., Fan, P. & Brongersma, M. L. Optical coupling of deep-subwavelength semiconductor nanowires. Nano Lett. 11, 1463–1468 (2011).

    Article  MATH  Google Scholar 

Download references

Acknowledgements

M.L.B. acknowledges support from a Multidisciplinary University Research Initiative (MURI) grant from the Air Force Office of Scientific Research under award number FA9550-21-1-0312 and Department of Energy grant DE-FG07-ER46426. A.M. is supported by a Defense Advanced Research Projects Agency (DARPA) Small Business Technology Transfer (STTR) programme. F.C. acknowledges support from the Office of Naval Research (award number N00014-20-1-2450) and the Air Force Office of Scientific Research (award numbers FA9550-21-1-0312 and FA9550-22-1-0243). H.A.A. acknowledges support from the Air Force Office of Scientific Research (award number FA9550-21-1-0312) and from the Physical Behavior of Materials programme, Basic Energy Sciences, US Department of Energy (grant number DE-FG02-07ER46405).

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched the data for the article, substantially contributed to the discussion of content, and wrote, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Mark L. Brongersma.

Ethics declarations

Competing interests

M.L.B. has served as a scientific advisor to Metamaterials, Inc. and is currently consulting for the startup company Imagia, Inc. (https://www.processingoptics.com/). R.A.P. served as the Vice President of Research and Development at Metamaterials, Inc. A.M. is a co-founder of the startup company Tunoptix. W.T.C. is Chief Technology Officer of the startup company SNOChip. F.C. is a board member of Metalenz (https://metalenz.com/), which he started in 2016 with his former graduate student R. Devlin, now its Chief Executive Officer.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks Gun-Yeal Lee and Alexander Friemann Dmitriev, who co-reviewed with Ihar Faniayeu, for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

KolourOptik Stripe: https://metamaterial.com

Morphotonix: https://morphotonix.com/

SBIR and STTR programmes: https://www.sbir.gov/awards

SkyCool Systems: https://www.skycoolsystems.com/technology/

The ‘damascene process’ developed in the 1990s: https://www.ibm.com/history/copper-interconnects?mhsrc=ibmsearch_a&mhq=copper%20chip%20history

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brongersma, M.L., Pala, R.A., Altug, H. et al. The second optical metasurface revolution: moving from science to technology. Nat Rev Electr Eng 2, 125–143 (2025). https://doi.org/10.1038/s44287-024-00136-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44287-024-00136-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing